Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T16:52:32.647Z Has data issue: false hasContentIssue false

A perched, high-elevation wetland complex in the Atacama Desert (northern Chile) and its implications for past human settlement

Published online by Cambridge University Press:  05 March 2019

Luca Sitzia
Affiliation:
Universidad de Tarapacá, Facultad de Ciencias Sociales y Jurídicas, Arica, 1000000, Chile Laboratorio de Análisis e Investigaciones Arqueométricas, Museo Universidad de Tarapacá San Miguel de Azapa XV, Región de Arica y Parinacota, Camino a Azapa Km 12, Arica, 1000000, Chile
Eugenia M. Gayo
Affiliation:
Center for Climate and Resilience Research and Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, 4030000, Chile
Marcela Sepulveda
Affiliation:
Laboratorio de Análisis e Investigaciones Arqueométricas, Instituto de Alta Investigación, Universidad de Tarapacá, Antofagasta 1520, Casilla 6-D, Arica, 1000236, Chile Unité Mixte de Recherche 8096 Archéologie des Amériques (Centre National de la Recherche Scientifique - Université Paris 1), France
Juan S. González
Affiliation:
Independent researcher
Lucia Ibañez
Affiliation:
Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
Alain Queffelec
Affiliation:
PACEA (De la Préhistoire à l'Actuel : Culture, Environnement et Anthropologie), Unité mixte de recherche 5199, Centre National de la Recherche Scientifique, Université de Bordeaux, bâtiment B18, Allée Geoffroy Saint-Hilaire, 33615 Pessac Cedex, France
Ricardo De Pol-Holz
Affiliation:
Center for Climate and Resilience Research and GAIA-Antarctica, Universidad de Magallanes, Punta Arenas, 6200000, Chile

Abstract

A previously undocumented type of wetland is described from the Atacama Desert in northern Chile (3000 m above sea level), sustained exclusively by direct precipitation and perched above the regional water table. Geomorphological mapping, pedostratigraphy, geochemistry, and analysis of contemporary vegetation is used to understand wetland formation and dynamics during historical and present time periods. The paleowetland deposits overlie a Miocene tuff that acts as an impermeable barrier to water transfer and creates conditions for local shallow ground water. These deposits include several paleosols that were formed during periods when precipitation increased regionally at 7755–7300, 1270, 545, and 400–300 cal yr BP. The similarity in timing with other palaeohydrological records for the Atacama implies that paleosols from this wetland are proxies for reconstructing past changes in local and regional hydrological cycle. Archaeological investigations have revealed the presence of two small farms from the Late Intermediate period, i.e., during the earliest wetter phase represented by the paleosols. Both farms are located near the paleowetland deposits, which suggests that local inhabitants exploited these water sources during late pre-Hispanic times. Results of this study improve knowledge of settlement patterns during this and earlier cultural periods.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aber, J.S., Pavri, F., Aber, S., 2012. Wetland Environments: A Global Perspective. John Wiley and Sons.Google Scholar
Aitchison, J., 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London.Google Scholar
Aitchison, J., Greenacre, M., 2002. Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics) 51, 375392.Google Scholar
Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., Pielke, J.R., Pierrehumbert, R.A., et al. , 2002. Abrupt Climate Change: Inevitable Surprises. National Research Council, National Academy Press, Washington, DC.Google Scholar
Arroyo, M.K., Villagrán, C., Marticorena, C., Armesto, J.J., 1982. Flora y relaciones biogeograficas en los Andes del norte de Chile (18–19S). In: Veloso, A. & Bustos, E. (Eds.), El ambiente natural y las poblaciones humanas de los Andes del Norte Grande de Chile (Arica, Lat. 18 28 S). UNESCO, Montevideo, pp. 7192.Google Scholar
Arroyo, M.T.K., Squeo, F.A., Armesto, J.J., Villagran, C., 1988. Effects of aridity on plant diversity in the northern Chilean Andes: results of a natural experiment. Annals of the Missouri Botanical Garden 75, 5578.Google Scholar
Ayala, Cabrera y Asociados ltda., 2003. Diagnóstico actual del riego y drenaje en Chile y su proyección. Diagnóstico del riego y drenaje en la I región. Final Report. Comision Nacional de Riego, Santiago.Google Scholar
Babel, U., 1975. Micromorphology of soil organic matter. Soil Components 1, 369473.Google Scholar
Baied, C.A., Wheeler, J.C., 1993. Evolution of high Andean puna ecosystems: environment, climate, and culture change over the last 12,000 years in the Central Andes. Mountain Research and Development, 145156.Google Scholar
Bao, R., Hernández, A., Sáez, A., Giralt, S., Prego, R., Pueyo, J.J., Moreno, A., Valero-Garcés, B.L., 2015. Climatic and lacustrine morphometric controls of diatom paleoproductivity in a tropical Andean lake. Quaternary Science Reviews 129, 96110.Google Scholar
Bindler, R., 2006. Mired in the past — looking to the future: Geochemistry of peat and the analysis of past environmental changes. Global And Planetary Change, Peatlands: Records of Global Environmental Changes 53, 209221.Google Scholar
Birkeland, P.W., 1984. Soils and Geomorphology. Oxford University Press, New York.Google Scholar
Blazejewski, G.A., Stolt, M.H., Gold, A.J., Groffman, P.M., 2005. Macro- and micromorphology of subsurface carbon in riparian zone soils. Soil Science Society of America Journal 69, 1320.Google Scholar
Buttolph, L., 1998. Rangeland Dynamics and Pastoral Development in the High Andes: The Camelid Herders of Cosapa, Bolivia. PhD dissertation, Utah State University, Logan, USA.Google Scholar
Calhoun, A.J.K., Mushet, D.M., Bell, K.P., Boix, D., Fitzsimons, J.A., Isselin-Nondedeu, F., 2017. Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biological Conservation, Small Natural Features 211, 311.Google Scholar
Casby-Horton, S., Herrero, J., Rolong, N.A., 2015. Gypsum soils—their morphology, classification, function, and landscapes. In: Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, pp. 231290.Google Scholar
Comas, M., Thió-Henestrosa, S., 2011. CoDaPack 2.0: a stand-alone, multi-platform compositional software. CoDaWork'11, Girona, Spain.Google Scholar
de Porras, M.E., Maldonado, A., Pol-Holz, R.D., Latorre, C., Betancourt, J.L., 2017. Late Quaternary environmental dynamics in the Atacama Desert reconstructed from rodent midden pollen records. Journal of Quaternary Science 32, 665684.Google Scholar
DGA (Dirección General de Aguas), 1986. Mapa hidrogeológico de Chile, escala 1:2.500.000. Texto explicativo. Ministerio de Obras Publicas (MOP), Santiago.Google Scholar
Díaz, F.P., Frugone, M., Gutiérrez, R.A., Latorre, C., 2016. Nitrogen cycling in an extreme hyperarid environment inferred from δ15N analyses of plants, soils and herbivore diet. Scientific Reports 6, 22226.Google Scholar
Dubroeucq, D., Geissert, D., Quantin, P., 1998. Weathering and soil forming processes under semi-arid conditions in two Mexican volcanic ash soils. Geoderma 86, 99122.Google Scholar
Dudognon, C., Sepúlveda, M., 2016. Rock art of the upper Lluta valley, northernmost of Chile (South Central Andes): a visual approach to socio-economic changes between Archaic and Formative periods (6,000–1,500 years BP). Quaternary International 491, 136-145.Google Scholar
Flewett, S., Saintenoy, T., Sepúlveda, M., Mosso, E.F., Robles, C., Vega, K., Gutierrez, S., et al. , 2016. Micro x-ray fluorescence study of late pre-Hispanic ceramics from the western slopes of the south central Andes region in the Arica y Parinacota region, Chile: a new methodological approach. Applied Spectroscopy 70, 17591769.Google Scholar
Food and Agriculture Organization-World Reference Base (FAO-WRB), International Union of Soil Sciences (IUSS) Working Group, 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
Garcia, M., Gardeweg, M., Clavero, J., Hérail, G., 2004. Hoja Arica, Región de Tarapacá. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, No. 84. SERNAGEOMIN,Santiago.Google Scholar
Garreaud, R., Vuille, M., Clement, A.C., 2003. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 522.Google Scholar
Gayo, E.M., Latorre, C., Jordan, T.E., Nester, P.L., Estay, S.A., Ojeda, K.F., Santoro, C.M., 2012a. Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21°S). Earth-Science Reviews 113, 120140.Google Scholar
Gayo, E.M., Latorre, C., Santoro, C.M., Maldonado, A., de Pol-Holz, R., 2012b. Hydroclimate variability in the low-elevation Atacama Desert over the last 2500 yr. Climate of the Past 8, 287306.Google Scholar
Grosjean, M., Núñez, L., Cartajena, I., 2005. Palaeoindian occupation of the Atacama Desert, northern Chile. Journal of Quaternary Science 20, 643653.Google Scholar
Grosjean, M., Santoro, C.M., Thompson, L.G., Núñez, L., Standen, V.G., 2007. Mid-Holocene climate and culture change in the South Central Andes. In: Anderson, D.G., Maasch, K.A., Sandweiss, D.H. (Eds.), Climate Change and Cultural Dynamics. Academic Press, San Diego, pp. 51115.Google Scholar
Guilloré, P., 1980. Méthode de fabrication mécanique et en série des lames minces. Institut National d'Agronomie Paris-Grignon, Département des Sols, Paris.Google Scholar
Gustavsson, M., Kolstrup, E., Seijmonsbergen, A.C., 2006. A new symbol-and-GIS based detailed geomorphological mapping system: Renewal of a scientific discipline for understanding landscape development. Geomorphology 77, 90111.Google Scholar
Hernández, A., Bao, R., Giralt, S., Sáez, A., Leng, M.J., Barker, P.A., Kendrick, C.P., Sloane, H.J., 2013. Climate, catchment runoff and limnological drivers of carbon and oxygen isotope composition of diatom frustules from the central Andean Altiplano during the Lateglacial and Early Holocene. Quaternary Science Reviews 66, 6473.Google Scholar
Herrera, C., Custodio, E., Chong, G., Lambán, L.J., Riquelme, R., Wilke, H., Jódar, J., et al. , 2016. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes. Science of the Total Environment 541, 303318.Google Scholar
Holmgren, C.A., Rosello, E., Latorre, C., Betancourt, J.L., 2008. Late-Holocene fossil rodent middens from the Arica region of northernmost Chile. Journal of Arid Environments 72, 677686.Google Scholar
Houston, J., 2006. Variability of precipitation in the Atacama Desert: its causes and hydrological impact. International Journal of Climatology 26, 21812198.Google Scholar
Houston, J., Hartley, A.J., 2003. The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. International Journal of Climatology 23, 14531464.Google Scholar
Junk, W.J., An, S., Finlayson, C.M., Gopal, B., Květ, J., Mitchell, S.A., Mitsch, W.J., Robarts, R.D., 2013. Current state of knowledge regarding the world's wetlands and their future under global climate change: a synthesis. Aquatic Sciences 75, 151167.Google Scholar
Kent, M., 2011. Vegetation Description and Data Analysis: A Practical Approach. John Wiley and Sons, Chichester, West Sussex, UK.Google Scholar
Latorre, C., Betancourt, J.L., Arroyo, M.T.K., 2006. Late Quaternary vegetation and climate history of a perennial river canyon in the Río Salado basin (22°S) of northern Chile. Quaternary Research 65, 450466.Google Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., Quade, J., 2002. Vegetation invasions into absolute desert: a 45000 yr rodent midden record from the Calama–Salar de Atacama basins, northern Chile (lat 22°–24°S). Geological Society of America Bulletin 114, 349366.Google Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., Quade, J., Matthei, O., 2003. A vegetation history from the arid prepuna of northern Chile (22–23°S) over the last 13 500 years. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 223246.Google Scholar
Maldonado, A., Betancourt, J.L., Latorre, C., Villagran, C., 2005. Pollen analyses from a 50 000-yr rodent midden series in the southern Atacama Desert (25°30′ S). Journal of Quaternary Science 20, 493507.Google Scholar
Martín-Fernández, J., Barceló-Vidal, C., Pawlowsky-Glahn, V., 2003. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Mathematical Geology 35, 253278.Google Scholar
Melly, B.L., Schael, D.M., Gama, P.T., 2017. Perched wetlands: an explanation to wetland formation in semi-arid areas. Journal of Arid Environments 141, 3439.Google Scholar
Morales, M.S., Christie, D.A., Villalba, R., Argollo, J., Pacajes, J., Silva, J.S., Alvarez, C.A., Llancabure, J.C., Soliz Gamboa, C.C., 2012. Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings. Climate of the Past 8, 653666.Google Scholar
Moreno, A., Giralt, S., Valero-Garcés, B., Sáez, A., Bao, R., Prego, R., Pueyo, J.J., González-Sampériz, P., Taberner, C., 2007. A 14 kyr record of the tropical Andes: The Lago Chungará sequence (18°S, northern Chilean Altiplano). Quaternary International 161, 421.Google Scholar
Moreno, A., Santoro, C.M., Latorre, C., 2009. Climate change and human occupation in the northernmost Chilean Altiplano over the last ca. 11 500 cal. a BP. Journal of Quaternary Science 24, 373382.Google Scholar
Mortimer, C., Saric, N., 1972. Landform evolution in the coastal region of Tarapacá Province, Chile. Revue de géomorphologie dynamique 21, 162170.Google Scholar
Mujica, M.I., Latorre, C., Maldonado, A., González-Silvestre, L., Pinto, R., de Pol-Holz, R., Santoro, C.M., 2014. Late Quaternary climate change, relict populations and present-day refugia in the northern Atacama Desert: a case study from Quebrada La Higuera (18°S). Journal of Biogeography 42, 7688.Google Scholar
Muñoz, I., Briones, L., 1996. Poblados, rutas y arte rupestre precolombinos de Arica: descripción y análisis de sistema de organización. Chungará 28, 4784.Google Scholar
Muñoz Ovalle, I., 2005. Espacio social y áreas de actividad en asentamientos agrícolas prehispánicos tardíos en la sierra de Arica. Bulletin de l'Institut Français d’Études Andines 34, 321355.Google Scholar
Naranjo, J.A., Paskoff, R., 1985. Evolución cenozoica del piedemonte andino en la Pampa del Tamarugal, norte de Chile (18–21 S). In: Congreso Geológico Chileno. Publisher, Antofagasta, Chile, pp. 149165.Google Scholar
Navarro, G., 1993. Vegetación de Bolivia: el Altiplano meridional. Rivasgodaya 7, 6998.Google Scholar
Nester, P.L., Gayó, E., Latorre, C., Jordan, T.E., Blanco, N., 2007. Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proceedings of the National Academy of Sciences of the United States of America 104, 1972419729.Google Scholar
Nicholas, G.P., 1998. Wetlands and hunter-gatherers: a global perspective. Current Anthropology 39, 720731.Google Scholar
Niemeyer, H., 1989. El Escenario geográfico. In: Hidalgo L., Jorge, Culturas de Chile 1 Prehistoria: Desde Sus Orígenes Hasta Los Albores de La Conquista. Andrés Bello, Santiago, pp. 112.Google Scholar
Núñez, L., Cartajena, I., Grosjean, M., 2013. Archaeological silence and ecorefuges: arid events in the Puna of Atacama during the Middle Holocene. Quaternary International 307, 513.Google Scholar
Osorio, D., Steele, J., Sepúlveda, M., Gayo, E.M., Capriles, J.M., Herrera, K., Ugalde, P., De Pol-Holz, R., Latorre, C., Santoro, C.M., 2017. The Dry Puna as an ecological megapatch and the peopling of South America: technology, mobility, and the development of a late Pleistocene/early Holocene Andean hunter-gatherer tradition in northern Chile. Quaternary International 461, 4153.Google Scholar
Paskoff, R., 1979. Sobre la Evolución Geomorfológica del gran acantilado costero del Norte Grande de Chile. Norte Grande 6, 722.Google Scholar
Pfeiffer, M., Latorre, C., Santoro, C.M., Gayo, E.M., Rojas, R., Carrevedo, M.L., McRostie, V.B., et al. , 2018. Chronology, stratigraphy and hydrological modelling of extensive wetlands and paleolakes in the hyperarid core of the Atacama Desert during the late quaternary. Quaternary Science Reviews 197, 224245.Google Scholar
Pigati, J.S., Rech, J.A., Quade, J., Bright, J., 2014. Desert wetlands in the geologic record. Earth-Science Reviews 132, 6781.Google Scholar
Placzek, C., Quade, J., Betancourt, J.L., 2001. Holocene lake-level fluctuations of Lake Aricota, southern Peru. Quaternary Research 56, 181190.Google Scholar
Placzek, C., Quade, J., Betancourt, J.L., Patchett, P.J., Rech, J.A., Latorre, C., Matmon, A., Holmgren, C., English, N.B., 2009. Climate in the dry central Andes over geologic, millennial, and interannual timescales. Annals of the Missouri Botanical Garden 96, 386397.Google Scholar
Poch, R.M., Artieda, O., Herrero, J., Lebedeva-Verba, M., 2010. Gypsic features. In: Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp. 195216.Google Scholar
Porta, J., Herrero, J., 1990. Micromorphology and Genesis of Soils Enriched with Gypsum. In: Doublas, Lowell A., Soil Micro-Morphology: A Basic and Applied Science. Proceedings of the VIIIth International Working Meeting of Soil Micromorphology. Elsevier, San Antonio, Texas, pp. 321339.Google Scholar
Pueyo, J.J., Sáez, A., Giralt, S., Valero-Garcés, B.L., Moreno, A., Bao, R., Schwalb, A., Herrera, C., Klosowska, B., Taberner, C., 2011. Carbonate and organic matter sedimentation and isotopic signatures in Lake Chungará, Chilean Altiplano, during the last 12.3kyr. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 339355.Google Scholar
Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment 48, 119126.Google Scholar
Quade, J., Rech, J.A., Betancourt, J.L., Latorre, C., Quade, B., Rylander, K.A., Fisher, T., 2008. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69, 343360.Google Scholar
Rech, J.A., 2001. Late Quaternary Paleohydrology and Surficial Processes of the Atacama Desert, Chile: evidence from Wetland Deposits and Stable Isotopes of Soil Salts. PhD dissertation, University of Arizona, Tucson.Google Scholar
Rech, J.A., Pigati, J.S., Quade, J., Betancourt, J.L., 2003. Re-evaluation of mid-Holocene deposits at Quebrada Puripica, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 207222.Google Scholar
Rech, J.A., Quade, J., Betancourt, J.L., 2002. Late Quaternary paleohydrology of the central Atacama Desert (lat 22°–24°S), Chile. Geological Society of America Bulletin 114, 334348.Google Scholar
Ruthsatz, B., 2012. Vegetación y ecología de los bofedales altoandinos de Bolivia. Phytocoenologia 42, 133179.Google Scholar
Sáez, A., Godfrey, L.V., Herrera, C., Chong, G., Pueyo, J.J., 2016. Timing of wet episodes in Atacama Desert over the last 15 ka: the groundwater discharge deposits (GWD) from Domeyko Range at 25°S. Quaternary Science Reviews 145, 8293.Google Scholar
Saintenoy, T., Ajata, R., Romero, A.L., Sepulveda, M., 2017. Arqueología del territorio aldeano prehispánico tardío en los altos de Arica: aportes de la fotointerpretación satelital para el estudio regional de la cuenca alta de Azapa. Estudios Atacameños 54, 85110.Google Scholar
Santoro, C., Osorio, D., Ugalde, P., Sepúlveda, M., Cartajena, I., Standen, V., Gayó, E., Maldonado, A., et al. , 2016. Cazadores, recolectores y pescadores arcaicos del Desierto de Atacama, entre el Pacífico y los Andes, Norte de Chile (ca. 10.000- 3.700 años a.p.). In: Falabella, F., Sanhueza, L., Uribe, M., Aldunate, C., Hidalgo, J. (Eds.), Prehistoria en Chile: Desde sus primeros habitantes hasta los Incas. Editorial Universitaria, Santiago de Chile, pp. 117180.Google Scholar
Scasso, R., Limarino, O., 1997. Petrología y Diagénesis de rocas clásticas. Publicación Especial no 1. Asociación Argentina de Sedimentología, Buenos Aires.Google Scholar
Schittek, K., Forbriger, M., Mächtle, B., Schäbitz, F., Wennrich, V., Reindel, M., Eitel, B., 2015. Holocene environmental changes in the highlands of the southern Peruvian Andes (14°S) and their impact on pre-Columbian cultures. Climate of the Past 11, 2744.Google Scholar
Schwalb, A., Burns, S.J., Kelts, K., 1999. Holocene environments from stable isotope stratigraphy of ostracods and authigenic carbonate in Chilean Altiplano Lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 148, 153168.Google Scholar
Sepúlveda, M., Cornejo, L., Osorio, D., Uribe, M., Llanos, C., 2018. Cazadores-recolectores en tiempos formativos. Trayectoria histórica local en la precordilleradel extremo norte de Chile. Chungara 50, 2950.Google Scholar
Sepúlveda, M., Cornejo, L., Osorio, D., Sitzia, L., Saintenoy, T., Espinoza, F., 2017a. North/South Archaic Mobility in Dry Puna: Hunter-Gatherers from Upper Azapa Valley Basin, Northern Chile. Paper presented at the 82th Annual Meeting of the Society for American Archaeology, Vancouver, BC, Canada.Google Scholar
Sepúlveda, M., Saintenoy, T., Cornejo, L., Dudognon, C., Espinoza, F., Guerrero-Bueno, Z., Cerrillo-Cuenca, E., 2017b. Rock art painting and territoriality in the precordillera of northernmost Chile (South-Central Andes). Archeological and spatial approaches to the Naturalistic Tradition. Quaternary International. http://dx.doi.org/10.1016/j.quaint.2017.02.005.Google Scholar
Sitzia, L., Bertran, P., Sima, A., Chery, P., Queffelec, A., Rousseau, D.-D., 2017. Dynamics and sources of last glacial aeolian deposition in southwest France derived from dune patterns, grain-size gradients and geochemistry, and reconstruction of efficient wind directions. Quaternary Science Reviews 170, 250268.Google Scholar
Smyth, R.C., Sharp, J.M. Jr., 2006. The hydrology of tuffs. In: EDITORS, Tuffs—Their Properties, Uses, Hydrology, and Resources. Special Paper 408. The Geological Society of America, CITY, pp. 91112.Google Scholar
Squeo, F.A., Warner, B.G., Aravena, R., Espinoza, D., 2006. Bofedales: high altitude peatlands of the central Andes. Revista Chilena de Historia Natural 79, 245255.Google Scholar
Stolt, M.H., Lindbo, D.L., 2010. 17 - Soil Organic Matter. In: Stoops, G., Marcelino, V., Mees, F., Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp. 369396.Google Scholar
Stoops, G., 2003. Guidelines for analysis and description of soil and regolith thin sections. Vepraskas, M.J. (Ed.), Soil Science Society of America, Madison, USA.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., 2018, CALIB 7.1 (accessed October 30, 2018). http://calib.org.Google Scholar
Teiller, S., 1998. Flora y vegetación alto-andina del área de Collaguasi-Salar de Coposa, Andes del norte de Chile. Revista Chilena de Historia Natural 71, 313329.Google Scholar
Tooth, S., McCarthy, T.S., 2007. Wetlands in drylands: geomorphological and sedimentological characteristics, with emphasis on examples from southern Africa. Progress in Physical Geography 31, 341.Google Scholar
Tosdal, R.M., Clark, A.H., Farrar, E., 1984. Cenozoic polyphase landscape and tectonic evolution of the Cordillera Occidental, southernmost Peru. Geological Society of America Bulletin 95, 13181332.Google Scholar
Townley, L.R., 1998. Shallow groundwater systems. In: Dillon, P., Simmers, I. (Eds.), Shallow Groundwater Systems: IAH International Contribution to Hydrogeology. International Contributions to Hydrogeology 18. A.A. Balkema, Rotterdam, pp. 311.Google Scholar
Vandergoes, M.J., Newnham, R.M., Preusser, F., Hendy, C.H., Lowell, T.V., Fitzsimons, S.J., Hogg, A.G., Kasper, H.U., Schlüchter, C., 2005. Regional insolation forcing of late Quaternary climate change in the Southern Hemisphere. Nature 436, 242245.Google Scholar
Vaniman, D., 2006. Tuff mineralogy. In: Heicken, G., Tuffs—Their Properties, Uses, Hydrology, and Resources. Special Paper 408. Geological Society of America, Penrose, pp. 91112.Google Scholar
Vepraskas, M.J., Faulkner, S.P., 2000. Redox Chemistry of hydric soils. In: Richardson, J.L., Vepraskas, M.J. (Eds.), Wetland Soils Genesis, Hydrology, Landscapes, and Classification. CRC PRESS, Boca Raton, pp. 85107.Google Scholar
Verdin, J. P. (1996) Remote sensing of ephemeral water bodies in western Niger. International Journal of Remote Sensing 17, 733–48.Google Scholar
Villagrán, C., Armesto, J.J., Arroyo, M.T.K., 1981. Vegetation in a high Andean transect between Turi and Cerro León in Northern Chile. Vegetatio 48, 316.Google Scholar
Villagrán, C., Kalin Arroyo, M.T., Marticorena, C., 1983. Efectos de la desertización en la distribución de la flora andina de Chile. Revista Chilena de Historia Natural 137157.Google Scholar
Vleeschouwer, F.D., Vanneste, H., Mauquoy, D., Piotrowska, N., Torrejón, F., Roland, T., Stein, A., Roux, G.L., 2014. Emissions from Pre-Hispanic metallurgy in the South American atmosphere. PLoS ONE 9, e111315.Google Scholar
von Eynatten, H., Barceló-Vidal, C., Pawlowsky-Glahn, V., 2003. Modelling compositional change: the example of chemical weathering of granitoid rocks. Mathematical Geology 35, 231251.Google Scholar
Vuille, M., Ammann, C., 1997. Regional Snowfall Patterns in the High, Arid Andes. Climatic Change at High Elevation Sites 36, 181191.Google Scholar
Vuille, M., Keimig, F., 2004. Interannual variability of summertime convective cloudiness and precipitation in the Central Andes derived from ISCCP-B3 data. Journal of Climate 17, 33343348.Google Scholar
Walker, M.J.C., Berkelhammer, M., Björck, S., Cwynar, L.C., Fisher, D.A., Long, A.J., Lowe, J.J., Newnham, R.M., Rasmussen, S.O., Weiss, H., 2012. Formal subdivision of the Holocene Series/Epoch: a Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). Journal of Quaternary Science 27, 649659.Google Scholar
Witham, C.S., Oppenheimer, C., Horwell, C.J., 2005. Volcanic ash-leachates: a review and recommendations for sampling methods. Journal of Volcanology and Geothermal Research 141, 299326.Google Scholar
Yokota, S., Iwamatsu, A., 2000. Weathering distribution in a steep slope of soft pyroclastic rocks as an indicator of slope instability. Engineering Geology 55, 5768.Google Scholar
Zhou, J., Lau, K.-M., 1998. Does a Monsoon Climate Exist over South America? Journal of Climate 11, 10201040.Google Scholar
Zuloaga, F.O., Morrone, O., Belgrano, M., 2008. Catálogo de las Plantas Vasculares del Cono Sur. Monographs in Systematic Botany 107. Missouri Botanical Garden Press, St. Louis.Google Scholar
Supplementary material: File

Sitzia et al. supplementary material

Sitzia et al. supplementary material 1

Download Sitzia et al. supplementary material(File)
File 29.5 MB