Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T20:47:35.668Z Has data issue: false hasContentIssue false

Paleosol Stable Isotope Evidence for Early Hominid Occupation of East Asian Temperate Environments

Published online by Cambridge University Press:  20 January 2017

Hong Wang
Affiliation:
Illinois State Geological Survey, Champaign, Illinois, 61820
Stanley H. Ambrose
Affiliation:
Department of Anthropology, University of Illinois at Urbana–Champaign, Urbana, Illinois, 61801
Chao-Li Jack Liu
Affiliation:
Illinois State Geological Survey, Champaign, Illinois, 61820
Leon R. Follmer
Affiliation:
Illinois State Geological Survey, Champaign, Illinois, 61820

Abstract

Hominids left Africa and occupied mainland Asia by 1.8 myr ago. About 1.15 myr ago Homo erectus and an associatedStegodon–Ailuropoda fauna migrated from subtropical China across the Qinling Mountains into the temperate Loess Plateau. This migration may be an evolutionary milestone in human adaptability because it may represent the first occupation of a nontropical environment. Loess–paleosol stable isotope ratios from the last interglacial–glacial cycle provide comparative data for reconstructing the hominid paleoenvironments. The climate during Gongwangling hominid occupation about 1.15 myr ago was influenced by both Siberian–Mongolian winter and Indian summer monsoon systems characterized as a cold/cool, dry winter and warm/mild, semihumid summer and fall. The Gongwangling hominids preyed mainly on warm-climate-adapted animals such asStegodon–Ailuropoda fauna, suggesting a warm season occupation. The stable isotope ratios also indicate that the Chenjiawo hominids occupied an environment similar to that of the Gongwangling about 650,000 yr ago. The associated fauna, with a mixture of forest and steppe, warm- and cold/cool-climate-adapted animal assemblage's, suggests a permanent occupation by this time. Thus, the reliable earliest and permanent occupation of temperate environments may have occurred 150,000 yr earlier in eastern Asia rather than in Europe.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, G. B., Barnes, C. J., Hughes, M. W. and Leaney, F. W. J., (1984). The effects of climates and vegetation on oxygen-18 and deuterium profiles in soils. Isotope Hydrology 1983, 105124.Google Scholar
Ambrose, S. H. and Sikes, N. E., (1991). Soil carbon isotope evidence for Holocene habitat change in the Kenya Rift Valley. Science 253, 14021405.CrossRefGoogle Scholar
Amundson, R. G. and Smith, V. S., (1988). Effects of irrigation on the chemical properties of a soil in the western San Joaquin Valley, California. Arid Soil Research and Rehabilitation 2, 117.Google Scholar
Amundson, R. G., Chadwick, O. A., Sowers, J. M. and Doner, E., (1988). The relationship between modern climate and vegetation and the stable isotope chemistry of Mojave Desert soils. Quaternary Research 29, 245254.CrossRefGoogle Scholar
Amundson, R. G., Chadwick, O. A., Sowers, J. M. and Doner, E., (1989). The stable isotope chemistry of pedogenic carbonates at Kyle Canyon, Nevada. Soil Science Society of America Journal 53, 201210.Google Scholar
An, Z. S. and Ho, C. K., (1989). New magnetostratigraphic dates of Lantian Homo erectus. Quaternary Research 32, 213221.Google Scholar
An, Z. S., Wu, X. H., Wang, P. S., Wang, S. M., Dong, G. R., Su, X. J., Zhang,, D., Liu, Y. C., Zheng, S. H. and Zhao, S. L., (1991). Changes in the monsoon and associated environmental changes in China since the last interglacial. In “Loess Environment and Global Change” (T. S. Liu, Ed.), pp. 129. Science Press, Beijing.Google Scholar
Carbonell,, E., Bermudez, De Castro, J. M., Arsuaga, J. L., Diez, J. C., Rosas,, A., Guenca-Bescos,, G., Sala,, R., Mosquera,, M. and Rodriguz, X. P., (1995). Lower Pleistocene hominids and Artifacts from Atapuerca-TD6 (Spain). Science 269, 826830.Google Scholar
Cerling, T. E., (1984). The stable isotopic composition of soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71, 229240.Google Scholar
Cerling, T. E., Quade,, J., Wang,, Y. and Bowman, J. R., (1989). Carbon isotopes in soils and palaeosols as ecology and palaeocology indicators. Nature 341, 138139.Google Scholar
Cerling, T. E., Kappelman,, J., Quade,, J., Ambrose, S. H., Sikes, N. E. and Andrews, P., (1991). Reply to comment on the paleoenvironment of Kenyapi-thecus at Fort Ternan. Journal of Human Evolution 23, 371377.Google Scholar
Clemens, S. C., Murray, D. W. and Prell, W. L., (1996). Nonstationary phase of the Plio- Pleistocene Asian Monsoon. Science 274, 943938.Google Scholar
Dansqaard, W., (1964). Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Deines, P., (1980). The isotopic composition of reduced organic carbon. In “Handbook of Environmental Isotope Geochemistry” (P. Fritz and J. C. Fontes, Eds.) Vol. 1, The Terrestrial Environment, pp. 329406. Elsevier, Amsterdam.Google Scholar
Domros,, M. and Peng, G. B., (1988). “The Climate of China.” Springer-Verlag, Berlin.Google Scholar
Gabunia,, L. and Vekua, A., (1995). A Plio- Pleistocene hominid from Dmanisi, East Georgia, Caucasus. Nature 373, 509512.CrossRefGoogle Scholar
Gile, L. H., Peterson, F. F. and Grossman, R. B., (1966). Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science 101, 347360.Google Scholar
Hsu, J., (1966). The climatic condition in north China during the time of Sinanthropus. Science Sinica 15, 410–414 (in Chinese).Google Scholar
Hu, C. K. and Qi, T., (1978). Gongwangling Pleistocene mammalian fauna, Lantian, Shaanxi Province. In “Paleontologia Sinica,” New Series C, No. 21. Science, Beijing. [in Chinese]Google Scholar
Huang, W. P., Ciochon,, R., Gu, Y. M., Larick,, R., Fang, Q. R., Scharcz,, H., Yonge,, C., De Vos,, J. and Rink, W., (1995). Early Homo and associated artefacts from Asia. Nature 378, 275278.Google Scholar
Huang, W. P. and Fang, Q. R., (1991). “Wushan Hominid Site.” Ocean, Beijing. [in Chinese]Google Scholar
Ji, H. X., (1980). The classification of Quaternary mammalian fauna in Lantian area. Paleovertebrata and Paleoanthropologica, Sininica 18, 220228.Google Scholar
Kutzbach, J. E. and Guetter, P. J., (1986). The influence of changing orbital parameters and surface boundary conditions on climate simulations ofr the past 18,000 years. Journal of Atmospheric Science 43, 17261759.2.0.CO;2>CrossRefGoogle Scholar
Li, J. J., Feng, F. D. and Tang, L. Y., (1988). Late Quaternary monsoon patterns on the Loess Plateau of China. Earth Surface Processes and Landforms 13, 125135.Google Scholar
Liu, B. L., Phillips, F. M. and Campbell, A. R., (1996). Stable carbon and oxygen isotopes of pedogenic carbonates, Ajo Mountains, southern Arizona: Implications for paleoenvironmental change. Palaeogeography, Pa-leoclimatology, Palaeoecology 124, 233246.Google Scholar
Liu, T. S., et al. 1985. “Loess and the Environment.” Ocean, Beijing.Google Scholar
Liu, T. S., Ding, Z. L., Chen, M. Y. and An, Z. S., (1989). The global surface energy system and the geological role of wind stress. Quaternary International 2, 4354.Google Scholar
Liu, T. S. and Ding, Z. L., (1993). Stepwise coupling of monsoon circulations to global ice volume variations during the late Cenozoic. Global and Planetary Change 7, 119130.Google Scholar
Monger, H. C., Daugherty, L. A. and Gile, L. H., (1991). A microscopic examination of pedogenic calcite in an Aridisol of southern New Mexico. In “Occurrence, Characteristics, and Genesis of Carbonate, Gypsum, and Silica Accumulations in Soils,” SSSA Special Publication 26. pp. 3760.Google Scholar
Porter, S. C. and An, Z. S., (1995). Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.Google Scholar
Porter, S. C., An, Z. S. and Zheng, H. B., (1992). Cyclic Quaternary alluvi-ation and terracing in nonglaciated drainage basin on the north flank of the Qinling Shan, central China. Quaternary Research 38, 157169.CrossRefGoogle Scholar
Pu, Q. Y., (1982). Climate change study for the last 30,000 years in China. Journal of Nature 3, 193197. [in Chinese]Google Scholar
Quade,, J., Cerling, T. E. and Bowman, J. K., (1989). Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163165.Google Scholar
Quade,, J., Cater, J. M. L., Ojpa, T. P., Adam,, J. and Harrison, T. M., (1995). Late Miocene environmental change in Nepal and the northern Indian subcontinent: Stable isotopic evidence from paleosols. GSA Bulletin 107, 13811397.Google Scholar
Roebroeks, W., (1994). Updating the earliest occupation of Europe. Current Anthropology 35, 301305.Google Scholar
Roebroeks,, W. and Kolfschoten, T. V., (1994). The earliest occupation of Europe: a short chronology. Antiquity 68, 489503.CrossRefGoogle Scholar
Rozanski,, K., Araguas-Araguas,, L. and Gonfiantini, R., (1993). Isotopic patterns in modern global precipitation. Geophysical Monographs 78, 136.Google Scholar
Sirocko,, F., Garbe-Schonberg,, D., McIntyre,, A. and Molfino, B., (1996). Teleconnections between the subtropical monsoons and high-latitude climates during the last Deglaciation. Science 272, 526529.CrossRefGoogle Scholar
Smith, B. N., (1972). Natural abundance of the stable isotopes of carbon in biological systems. BioScience 22, 226231.Google Scholar
Stern, L. A., Chamberlain, C. P., Reynolds, R. C. and Johnson, G. D., (1997). Oxygen isotope evidence of climate change from pedogenic clay minerals in the Himalayan molasse. Geochimica et Cosmochimica Acta 61, 731744.CrossRefGoogle Scholar
Swisher, C. C., Curtis, G. H., Jacob,, T., Getty, A. G. and Suprijo Widias-moro, A., (1994). Age of the earliest known hominids in Java, Indonesia. Science 263, 11181121.Google Scholar
Sun, J. Z., Zhao, J. B., Sun, X. Y., Wie, M. J., Li, H. M. and Zhou, Z. B., (1987). Loess is even older. Marine Geology and Quaternary Geology 7, 105122. [in Chinese]Google Scholar
Sun, J. Z., Ke, M. H., Sun, X. Y., Zhao, J. B., Wei, M. J. and Li, B. C., (1991). Paleoclimate and paleoenvironment of Holocene in the Loess Plateau. In “Quaternary of Loess Plateau in China” (J. Z. Sun and J. B. Zhao, Eds.), pp. 186205. Science, Beijing. [in Chinese]Google Scholar
Thistlewood,, L. and Sun, J. Z., (1991). A paleomagnetic and mineral magnetic study of the loess sequence at Liujiapo, Xian, China. Journal of Quaternary Science 6, 1326.CrossRefGoogle Scholar
Thompson,, L., Mosley-Thompson,, L., Davis,, M., Bolzan,, J., Dai,, J., Yao,, T., Gundestrup,, N., Wu,, X., Klein,, L. and Xie, Z., (1989). Holocene and late Pleistocene climatic ice core records from Qinghai–Tebetan Plateau. Science 246, 474477.Google Scholar
Tieszen, L. L., (1994). Stable isotopes on the plains: Vegetation analyses and diet determinations. In “Skeletal Biology in the Great Plains Migration, Warfare, Health, and Subsistence,” (D. W. Owsley and R. L. Jantz, Eds.), pp. 261282. Smithsonian Institute, Washington, DC.Google Scholar
Wang, H., (1996). “Climate and Habitat Reconstruction of Hominid Sites in Northern China with Paleosol Stable Isotopes.” Ph.D. dissertation, Univ. of Illinois at Champaign–Urbana.Google Scholar
Wieder,, M. and Yaalon, D. H., (1982). Micromorphological fabrics and developmental stages of carbonate nodular forms related to soil characteristics. Geoderma 28, 203220.CrossRefGoogle Scholar
Zhang, J. C. and Lin, Z. G., (1992). “Climate in China.” Wiley, Shanghai.Google Scholar
Zheng, G. M., Wang, H. D. and Xu, J. L., (1990). In “The Natural History of China.” (J. Zhao, Ed). McGraw-Hill, New York.Google Scholar
Zhou, M. Z., (1964). Lantian, Shaanxi Middle Pleistocene mammalian fauna. Paleovertebrata and Paleoanthropologica Sinica 8, 301307.Google Scholar
Zhou, M. Z. and Li, C. K., (1965). New mammalian fossils from Chenjiawo site, Middle Pleistocene, Lantian, Shaanxi. Paleovertebrata and Pa-leoanthropologica Sinica 6, 377393.Google Scholar
Zhou, M. Z., (1965). The age and characteristics of mammalian fauna with Lantian Man fossil remains. Kexue Tongbao 6, 482487. [in Chinese]Google Scholar