Skip to main content Accessibility help
×
Home

A new set of basaltic tephras from Southeast Alaska represent key stratigraphic markers for the late Pleistocene

  • Paul S. Wilcox (a1), Jason Addison (a2), Sarah J. Fowell (a1), James F. Baichtal (a3), Ken Severin (a1) and Daniel H. Mann (a1)...

Abstract

Three new tephras have been identified in Southeast Alaska. An 8-cm-thick black basaltic tephra with nine discrete normally graded beds is present in cores from a lake on Baker Island. The estimated age of the tephra is 13,492 ± 237 cal yr BP. Although similar in age to the MEd tephra from the adjacent Mt. Edgecumbe volcanic field, this tephra is geochemically distinct. Black basaltic tephras recovered from two additional sites in Southeast Alaska, Heceta Island and the Gulf of Esquibel, are also geochemically distinct from the MEd tephra. The age of the tephra from Heceta Island is 14,609 ± 343 cal yr BP. Whereas the tephras recovered from Baker Island/Heceta Island/Gulf of Esquibel are geochemically distinct from each other, similarities in the ages of these tephras and the MEd tephra suggest a shared eruptive trigger, possibly crustal unloading caused by retreat of the Cordilleran Ice Sheet. The submerged Addington volcanic field on the continental shelf, which may have been subaerially exposed during the late Pleistocene, is a possible source for the Southeast Alaska tephras.

Copyright

Corresponding author

*Corresponding author e-mail address: paul.wilcox@uibk.ac.at (P.S. Wilcox).

References

Hide All
Addison, J.A., Begét, J.E., Ager, T.A., Finney, B.P., 2010. Marine tephrochronology of the Mt. Edgecumbe volcanic field, southeast Alaska, USA. Quaternary Research 73, 277292.
Aitchison, J., 1982. The statistical analysis of compositional data. Journal of the Royal Statistical Society Series B (Methodological) 44, 139177.
Ayuso, R.A., Karl, S.M., Slack, J.F., Haeussler, P.J., Bittenbender, P.E., Wandless, G.A., Colvin, A.S., 2005. Oceanic Pb-isotopic sources of Proterozoic and Paleozoic volcanogenic massive sulfide deposits on Prince of Wales Island and vicinity, southeastern Alaska. In: Haeussler, P.J., Galloway, J.P. (Eds.), Studies by the U.S. Geological Survey in Alaska, 2005. U.S. Geological Survey Professional Paper 1732, 120.
Baichtal, J.F., Carlson, R.J., 2010. Development of a model to predict the location of early-Holocene habitation sites along the western coast of Prince of Wales Island and the outer islands, southeast Alaska. Current Research in the Pleistocene 27, 6467.
Barron, J.A., Bukry, D., Dean, W.E., Addison, J.A., Finney, B., 2009. Paleoceanography of the Gulf of Alaska during the past 15,000 years: results from diatoms, silicoflagellates, and geochemistry. Marine Micropaleontology 72, 176195.
Begét, J.E., Motyka, R.J., 1998. New dates on late Pleistocene dacitic tephra from the Mount Edgecumbe volcanic field, southeastern Alaska. Quaternary Research 49, 123125.
Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.
Borchardt, G.A., 1974. The SIMAN coefficient for similarity analysis. Classification Society Bulletin 3, 18.
Borchardt, G.A., Aruscavage, P.J., Millard, H.J., 1972. Correlation of the Bishop ash, a Pleistocene marker bed, using instrumental neutron activation analysis. Journal of Sedimentary Research 42, 301306.
Brown, T.A., Nelson, D.E., Mathewes, R.W., Vogel, J.S., Southon, J.R., 1989. Radiocarbon dating of pollen by accelerator mass spectrometry. Quaternary Research 32, 205212.
Cashman, K., Blundy, J., 2000. Degassing and crystallization of ascending andesite and dacite. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 358, 14871513.
Clague, J.J., Evans, S.G., Rampton, V.N., Woodsworth, G.J., 1995. Improved age estimates for the White River and Bridge River tephras, western Canada. Canadian Journal of Earth Sciences 32, 11721179.
Edwards, B., Russell, J., 2000. Distribution, nature, and origin of Neogene–Quaternary magmatism in the northern Cordilleran volcanic province, Canada. Geological Society of America Bulletin 112, 12801295.
Edwards, B., Russell, J., and Anderson, R., 2002. Subglacial, phonolitic volcanism at Hoodoo Mountain volcano, northern Canadian Cordillera. Bulletin of Volcanology 64, 254272.
Fierstein, J., Hildreth, W., 2001. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska. U.S. Geological Survey Open-File Report 00-489. Alaska Volcano Observatory, Anchorage, AK.
Gehrels, G.E., Berg, H.C., 1992. Geologic Map of Southeast Alaska. U.S. Geological Survey, Denver, CO.
Gehrels, G.E., Berg, H.C., 1994. Geology of southeastern Alaska. In: Plafker, G., Berg, H.C. (Eds.), The Geology of Alaska. Geological Society of America, Boulder, CO, pp. 451467.
Greene, H.G., O'Connell, V.M., Brylinsky, C.K., 2011. Tectonic and glacial related seafloor geomorphology as possible demersal shelf rockfish habitat surrogates—examples along the Alaskan convergent transform plate boundary. Continental Shelf Research 31, 3953.
Hetherington, R., Barrie, J.V., Reid, R.G., MacLeod, R., Smith, D.J., James, T.S., Kung, R., 2003. Late Pleistocene coastal paleogeography of the Queen Charlotte Islands, British Columbia, Canada, and its implications for terrestrial biogeography and early postglacial human occupation. Canadian Journal of Earth Sciences 40, 17551766.
Jarosewich, E., Nelen, J.A., Norberg, J.A., 1980. Reference samples for electron microprobe analysis. Geostandards and Geoanalytical Research 4, 4347.
Karl, S.M., Baichtal, J.F., Calvert, A.T., Layer, P.W., 2013. Pliocene to Recent alkalic volcanic centers in southeast Alaska: western component of the Northern Cordilleran Volcanic Province. Alaska Geology: Newsletter of the Alaska Geological Society 44, 12.
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., IUGS Subcommission on the Systematics of Igneous Rocks, 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745750.
Lesnek, A.J., Briner, J.P., Lindqvist, C., Baichtal, J.F., Heaton, T.H., 2018. Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas. Science Advances 4, eaar5040.
Liu, E.J., Oliva, M., Antoniades, D., Giralt, S., Granados, I., Pla-Rabes, S., Toro, M., Geyer, A., 2016. Expanding the tephrostratigraphical framework for the South Shetland Islands, Antarctica, by combining compositional and textural tephra characterisation. Sedimentary Geology 340, 4961.
Lowe, D.J., 2011. Tephrochronology and its application: a review. Quaternary Geochronology 6, 107153.
Praetorius, S., Mix, A., Jensen, B., Froese, D., Milne, G., Wolhowe, M., Addison, J., Prahl, F., 2016. Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation. Earth and Planetary Science Letters 452, 7989.
Preece, S.J., Westgate, J.A., Stemper, B.A., Péwé, T.L., 1999. Tephrochronology of late Cenozoic loess at Fairbanks, central Alaska. Geological Society of America Bulletin 111, 7190.
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., et al. , 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 11111150.
Riehle, J.R., Mann, D.H., Peteet, D.M., Engstrom, D.R., Brew, D.A., Meyer, C.E., 1992. The Mount Edgecumbe tephra deposits, a marker horizon in southeastern Alaska near the Pleistocene-Holocene boundary. Quaternary Research 37, 183202.
Shane, P.A., Froggatt, P.C., 1994. Discriminant function analysis of glass chemistry of New Zealand and North American tephra deposits. Quaternary Research 41, 7081.
Soja, C.M., 1990. Island arc carbonates from the Silurian Heceta Formation of southeastern Alaska (Alexander terrane). Journal of Sedimentary Research 60, 235249.
Stuiver, M., Reimer, P.J., 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.
Taylor, M.A., Hendy, I.L., Pak, D.K., 2014. Deglacial ocean warming and marine margin retreat of the Cordilleran Ice Sheet in the North Pacific Ocean. Earth and Planetary Science Letters 403, 8998.
Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30, 377392.

Keywords

Related content

Powered by UNSILO
Type Description Title
UNKNOWN
Supplementary materials

Wilcox et al. supplementary material
Wilcox et al. supplementary material 1

 Unknown (1.4 MB)
1.4 MB

A new set of basaltic tephras from Southeast Alaska represent key stratigraphic markers for the late Pleistocene

  • Paul S. Wilcox (a1), Jason Addison (a2), Sarah J. Fowell (a1), James F. Baichtal (a3), Ken Severin (a1) and Daniel H. Mann (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.