Skip to main content Accessibility help

Long-term impacts of mid-Holocene drier climatic conditions on Bolivian tropical dry forests

  • Heather J. Plumpton (a1), Francis E. Mayle (a1) and Bronwen S. Whitney (a2)


The Bolivian Chiquitano dry forest is the largest block of intact seasonally dry tropical forest in South America and is a priority ecoregion for conservation due to its high threat status. However, the long-term impacts of drier climatic conditions on tropical dry forests are not well understood, despite climate models predicting increased droughts over Bolivia in the coming century. In this paper, we assess the impacts of drier climatic conditions during the mid-Holocene on the Bolivian Chiquitano tropical dry forest using fossilised pollen, phytoliths, macro-charcoal, and geochemical proxies from a sediment core from a large lake (Laguna Mandioré) on the Bolivia–Brazil border. Our results show that drier climatic conditions during the mid-Holocene caused a local-scale, ecotonal expansion of upland savannah at the expense of dry forest. Interaction between drier climatic conditions and fire regime likely exerted a stronger control over the position of the dry forest–savannah ecotone than edaphic factors. However, the majority of the dry forest within the lake catchment maintained a closed canopy throughout the drier conditions of the mid-Holocene, despite floristic turnover towards more drought-tolerant taxa. These findings imply overall resilience of the Chiquitano dry forest biome to future drought, albeit with floristic changes and upland savannah encroachment at ecotones.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Long-term impacts of mid-Holocene drier climatic conditions on Bolivian tropical dry forests
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Long-term impacts of mid-Holocene drier climatic conditions on Bolivian tropical dry forests
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Long-term impacts of mid-Holocene drier climatic conditions on Bolivian tropical dry forests
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited

Corresponding author

*Corresponding author at: Russell Building, School of Archaeology, Geography and Environmental Science (SAGES), University of Reading, Whiteknights, P.O. Box 227, Reading RG6 6DW, Berkshire, United Kingdom. E-mail address: (H.J. Plumpton).


Hide All
Alho, C.J.R., 2005. The Pantanal. In: Fraser, L.H., Keddy, P.A. (Eds.), The World's Largest Wetlands: Ecology and Conservation. Cambridge University Press, Cambridge, pp. 203271.
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., 2001. The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.
Banda-R, K., Delgado-Salinas, A., Dexter, K.G., Linares-Palomino, R., Oliveira-Filho, A., Prado, D., Pullan, M., et al. , 2016. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353, 13831387.
Bennett, K.D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, 155170.
Bespalez, E., 2015. Arqueologia e história indígena no Pantanal. Estudos Avançados 29, 4586.
Bird, B.W., Abbott, M.B., Rodbell, D.T., Vuille, M., 2011. Holocene tropical South American hydroclimate revealed from a decadally resolved lake sediment δ18O record. Earth and Planetary Science Letters 310, 192202.
Birks, H.J.B., Line, J.M., 1992. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2, 110.
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age–depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.
Boisier, J.P., Ciais, P., Ducharne, A., Guimberteau, M., 2015. Projected strengthening of Amazonian dry season by constrained climate model simulations. Nature Climate Change 5, 656660.
Boutton, T.W., 1996. Stable carbon isotope ratios of soil organic matter and their use as indicators ofvegetation and climate change. In: Boutton, T.W., Yamasak, S. (Eds.), Mass Spectrometry of Soils. Dekker, New York, pp. 4782.
Boyd, W.E., Lentfer, C.J., Torrence, R., 1998. Phytolith analysis for wet tropics environment: methodological issues and implications for the archaeology of Garua Island, West New Britain, Papua New Guinea. Palynology 22, 213228.
Burbridge, R.E., Mayle, F.E., Killeen, T.J., 2004. Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quaternary Research 61, 215230.
Burn, M.J., Mayle, F.E., 2008. Palynological differentiation between genera of the Moraceae family and implications for Amazonian palaeoecology. Review of Palaeobotany and Palynology 149, 187201.
Cardoso, A.W., Oliveras, I., Abernethy, K.A., Jeffery, K.J., Lehmann, D., Edzang Ndong, J., McGregor, I., Belcher, C.M., Bond, W.J., Malhi, Y.S., 2018. Grass species flammability, not biomass, drives changes in fire behavior at tropical forest–savanna transitions. Frontiers in Forests and Global Change 1, 6.
Carson, J.F., Watling, J., Mayle, F.E., Whitney, B.S., Iriarte, J., Prumers, H., Soto, J.D., 2015. Pre-Columbian land use in the ring-ditch region of the Bolivian Amazon. The Holocene 25, 12851300.
Colinvaux, P.A., Oliveira, P.E. de, Patiño, J.E.M., 1999. Amazon Pollen Manual and Atlas. Harwood Academic, Amsterdam.
Cruz, F.W., Vuille, M., Burns, S.J., Wang, X., Cheng, H., Werner, M., Lawrence Edwards, R., Karmann, I., Auler, A.S., Nguyen, H., 2009. Orbitally driven east–west antiphasing of South American precipitation. Nature Geoscience 2, 210214.
DeFries, R., Hansen, A., Newton, A.C., Hansen, M.C., 2004. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecological Applications 15, 1926.
Dickau, R., Whitney, B.S., Iriarte, J., Mayle, F.E., Soto, J.D., Metcalfe, P., Street-Perrott, F.A., Loader, N.J., Ficken, K.J., Killeen, T.J., 2013. Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Review of Palaeobotany and Palynology 193, 1537.
Dubs, B., 1992. Observations on the differentiation of woodland and wet savanna habitats in the Pantanal of Mato Grosso, Brazil. In: Furley, P.A., Proctor, J., Ratter, J.A. (Eds.), Nature and Dynamics of Forest–Savanna Boundaries. Chapman & Hall, London, pp. 431449.
Duffy, P.B., Brando, P., Asner, G.P., Field, C.B., 2015. Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences USA 112, 201421010.
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. John Wiley and Sons Ltd, Chichester.
Fornace, K.L., Whitney, B.S., Galy, V., Hughen, K.A., Mayle, F.E., 2016. Late Quaternary environmental change in the interior South American tropics: new insight from leaf wax stable isotopes. Earth and Planetary Science Letters 438, 7585.
Francus, P., Lamb, H., Nakagawa, T., Marshall, M., Brown, E., Members, S. 2006 P., 2009. The potential of high-resolution X-ray fluorescence core scanning: applications in paleolimnology. PAGES News 17, 9395.
Gentry, A.H., 1995. Diversity and floristic composition of neotropical dry forests. In: Bullock, S.H., Mooney, H.A., Medina, E. (Eds.), Seasonally Dry Tropical Forests. Cambridge University Press, Cambridge, pp. 146194.
Gosling, W.D., Mayle, F.E., Tate, N.J., Killeen, T.J., 2009. Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Review of Palaeobotany and Palynology 153, 7085.
Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13, 1335.
Guerreiro, R.L., McGlue, M.M., Stone, J.R., Bergier, I., Parolin, P., Silva Caminha, S.A.F. da, Warren, L. V., Assine, M.L., 2017. Paleoecology explains Holocene chemical changes in lakes of the Nhecolandia (Pantanal-Brazil). Hydrobiologia 815 (1), 119.
Hamilton, S.K., 2002. Hydrological controls of ecological structure and function in the Pantanal wetland (Brazil). In: The Ecology of South American Rivers and Wetlands. IAHS Special Publication No. 6. International Association of Hydrological Sciences, Wallingford, UK, 133158.
Harris, D., Horwath, W.R., Kessel, C. van, 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Science Society of America Journal 65, 18531856.
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.
Hilje, B., Calvo-Alvarado, J., Jiménez-Rodríguez, C., Sánchez-Azofeifa, A., 2015. Tree species composition, breeding systems, and pollination and dispersal syndromes in three forest successional stages in a tropical dry forest in Mesoamerica. Tropical Conservation Science 8, 7694.
Iriarte, J., Paz, E.A., 2009. Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quaternary International 193, 99123.
Janzen, D., 1988. Tropical dry forests. The most endangered major tropical ecosystem. In: Wilson, E.O. (Ed.), Biodiversity. National Academy of Sciences/Smithsonian Institution, Washington DC, pp. 130137.
Jardim, A., Killeen, T.J., Fuentes, A., 2003. Introduction. In: Rumiz, D.I. (Ed.), Guía de Los Árboles y Arbustos Del Bosque Seco Chiquitano, Bolivia. Fundacíon Amigos de la Naturaleza Noel Kempff (FAN), Santa Cruz, Bolivia, pp. 125.
Jones, H.T., Mayle, F.E., Pennington, R.T., Killeen, T.J., 2011. Characterisation of Bolivian savanna ecosystems by their modern pollen rain and implications for fossil pollen records. Review of Palaeobotany and Palynology 164, 223237.
Juggins, S., 2016. C2 Version 1.7: software for ecological and palaeoecological data analysis and visualisation [computer software]. University of Newcastle, Newcastle-upon-Tyne, UK.
Juggins, S., 2017. rioja: analysis of Quaternary science data. R package version 0.9-15.1 [computer software]. University of Newcastle, Newcastle-upon-Tyne, UK.
Killeen, T.J., Chavez, E., Pena-Claros, M., Toledo, M., Arroyo, L., Caballero, J., Correa, L., et al. , 2006. The Chiquitano dry forest, the transition between humid and dry forest in easterm lowland Bolivia. In: Pennington, T.R., Lewis, G. P., Ratter, J. A. (Eds.), Neotropical Savannahs and Seasonally Dry Forests: Plant Diversity, Biogeography and Conservation. Taylor & Francis, pp. 213233. Boca Raton, Florida.
Killeen, T.J., Schulenberg, T.S., 1998. A Biological Assessment of Parc Nacional Noel Kempff Mercado, Bolivia. RAP Working Paper 10. Conservation International, Washington, DC.
Klink, C.A., Machado, R.B., 2005. Conservation of the Brazilian cerrado. Conservation Biology 19, 707713.
Kondo, R., Childs, C., Atkinson, L., 1994. Opal phytoliths of New Zealand. Manaaki Press, Lincoln, New Zealand.
Lu, H., Liu, K.B., 2003. Phytoliths of common grasses in the coastal environments of southeastern USA. Estuarine, Coastal and Shelf Science 58, 587600.
Maezumi, S.Y., Whitney, B.S., Mayle, F.E., Gregorio de Souza, J., Iriarte, J., 2018. Reassessing climate and pre-Columbian drivers of paleofire activity in the Bolivian Amazon. Quaternary International 488, 8194.
Maksic, J., Shimizu, M.H., Oliveira, G.S. de, Venancio, I.M., Cardoso, M., Ferreira, F.A., 2019. Simulation of the Holocene climate over South America and impacts on the vegetation. The Holocene 29(2), 287299.
Malhi, Y., Aragao, L.E.O.C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., Meir, P., 2009. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences USA 106, 2061020615.
Malhi, Y., Roberts, J.T., Betts, R.A, Killeen, T.J., Li, W., Nobre, C.A, 2008. Climate change, deforestation, and the fate of the Amazon. Science 319, 169172.
Marengo, J., Alves, L., Torres, R., 2016. Regional climate change scenarios in the Brazilian Pantanal watershed. Climate Research 68, 201213.
Marengo, J., Chou, SC, Torres, R., Giarolla, A., Alves, L., Lyra, A., 2014. Climate Change in Central and South America: Recent Trends, Future Projections, and Impacts on Regional Agriculture. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark.
Marsh, E.J., Bruno, M.C., Fritz, S.C., Baker, P., Capriles, J.M., Hastorf, C.A., 2018. IntCal, SHCal, or a mixed curve? Choosing a14C calibration curve for archaeological and paleoenvironmental records from tropical South America. Radiocarbon 60, 925940.
Mayle, F.E., Burbridge, R., Killeen, T.J., 2000. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 22912294.
McGlue, M.M., Silva, A., Corradini, F.A., Zani, H., Trees, M.A., Ellis, G.S., Parolin, M., Swarzenski, P.W., Cohen, A.S., Assine, M.L., 2011. Limnogeology in Brazil's “forgotten wilderness”: a synthesis from the large floodplain lakes of the Pantanal. Journal of Paleolimnology 46, 273289.
McGlue, M.M., Silva, A., Zani, H., Corradini, F.A., Parolin, M., Abel, E.J., Cohen, A.S., et al. , 2012. Lacustrine records of Holocene flood pulse dynamics in the upper Paraguay River watershed (Pantanal wetlands, Brazil). Quaternary Research 78, 285294.
Mercader, J., Bennett, T., Esselmont, C., Simpson, S., Walde, D., 2009. Phytoliths in woody plants from the Miombo woodlands of Mozambique. Annals of Botany 104, 91113.
Mercader, J., Bennett, T., Esselmont, C., Simpson, S., Walde, D., 2011. Soil phytoliths from miombo woodlands in Mozambique. Quaternary Research 75, 138150.
Metcalfe, S.E., Whitney, B.S., Fitzpatrick, K.A., Mayle, F.E., Loader, N.J., Street-Perrott, F.A., Mann, D.G., 2014. Hydrology and climatology at Laguna La Gaiba, lowland Bolivia: complex responses to climatic forcings over the last 25 000 years. Journal of Quaternary Science 29, 289300.
Meyers, P., Teranes, J., 2001. Sediment Organic Matter. Tracking Environmental Change Using Lake Sediments. Vol. 2, Physical and Geochemical Methods. Kluwer Academic, Dordrecht, Netherlands.
Novello, V.F., Cruz, F.W., Vuille, M., Stríkis, N.M., Edwards, R.L., Cheng, H., Emerick, S. et al. , 2017. A high-resolution history of the South American monsoon from last glacial maximum to the Holocene. Scientific Reports 7, 44267.
Nunes da Cunha, C., Junk, W.J., Leitão Filho, H.D.F., 2007. Woody vegetation in the Pantanal of Mato Grosso, Brazil: a preliminary typology. Amazoniana 19, 159184.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., et al. , 2018. vegan: community ecology package. R package version 2.5-2 [computer software]. Natural History Museum, Helsinki, Finland.
Oliveira, M.T. de, Damasceno-Junior, G.A., Pott, A., Paranhos Filho, A.C., Suarez, Y.R., Parolin, P., 2014. Regeneration of riparian forests of the Brazilian Pantanal under flood and fire influence. Forest Ecology and Management 331, 256263.
Oliveira Filho, A.T., Ratter, J.A., 2002. Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira, P.S., Marquis, R.J. (Eds.), The Cerrados of Brazil. Columbia University Press, New York, pp. 91120.
Oliveras, I., Malhi, Y., 2016. Many shades of green: the dynamic tropical forest–savannah transition zones. Philosophical Transactions of the Royal Society of London B 371, 20150308.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'amico, J.A., et al. , 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933938.
Pennington, R.T., Lavin, M., Oliveira-Filho, A., 2009. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution, and Systematics 40, 437457.
Pennington, R.T., Prado, D.E., Pendry, C.A., 2000. Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography 27, 261273.
Pessenda, L.R., Gouveia, S.M., Aravena, R., Gomes, B.M., Boulet, R., Ribeiro, A.S., 1998. 14C dating and stable carbon isotopes of soil organic matter in forest–savanna boundary areas in the southern Brazilian Amazon region. Radiocarbon 40(2), 10131022.
Piperno, D.R., 2006. Phytoliths: A Comprehensive Guide for Archeologists and Paleoecologists. AltaMira Press, Lanham, MD.
Piperno, D.R., Pearsall, D.M., 1998a. The Origins of Agriculture in the Lowland Neotropics. Academic Press, New York.
Piperno, D.R., Pearsall, D.M., 1998b. The Silica Bodies of Tropical American Grasses: Morphology, Taxonomy, and Implications for Grass Systematics and Fossil Phytolith Identification. Smithsonian Contributions to Botany 1–40. Smithsonian Institution Press, Washington, DC.
Power, M.J., Whitney, B.S., Mayle, F.E., Neves, D.M., Boer, E.J. de, Maclean, K.S., 2016. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest. Philosophical Transactions of the Royal Society of London B 371, 20150165.
Prado, L.F., Wainer, I., Chiessi, C.M., Ledru, M.P., Turcq, B., 2013. A mid-Holocene climate reconstruction for eastern South America. Climate of the Past 9, 21172133.
Prance, G.T., Schaller, G.B., 1982. Preliminary study of some vegetation types of the Pantanal, Mato Grosso, Brazil. Brittonia 34, 228.
Rasbold, G.G., McGlue, M.M., Stevaux, J.C., Parolin, M., Silva, A., Bergier, I., 2019. Sponge spicule and phytolith evidence for Late Quaternary environmental changes in the tropical Pantanal wetlands of western Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 518, 119133.
Ratter, J.A., Pott, A., Pott, V.J., Nunes da Cunha, C., Haridasan, M., 1988. Observations on woody vegetation types in the Pantanal and at Corumbá, Brazil. Notes from the Royal Botanic Garden, Edinburgh 45, 503525.
Reese, C.A., Liu, K.B., Thompson, L.G., 2013. An ice-core pollen record showing vegetation response to Late-glacial and Holocene climate changes at Nevado Sajama, Bolivia. Annals of Glaciology 54, 183190.
Reich, P.B., Borchert, R., 1984. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. Journal of Ecology 72, 61.
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 Years cal BP. Radiocarbon 55, 18691887.
Ricketson, J., 2001. Sparganiaceae bur-reed family. Journal of the Arizona–Nevada Academy of Science 33, 6568.
Roubik, D., Moreno, P., 1991. Pollen and Spores of Barro Colorado Island. Monographs in Systematic Botany, Volume 36. Missouri Botanical Garden, St. Louis.
Runge, F., 1999. The opal phytolith inventory of soils in central Africa—quantities, shapes, classification, and spectra. Review of Palaeobotany and Palynology 107, 2353.
Sánchez, E., Solman, S., Remedio, A.R.C., Berbery, H., Samuelsson, P., Rocha, R.P. Da, Mourão, C., et al. , 2015. Regional climate modelling in CLARIS-LPB: a concerted approach towards twentyfirst century projections of regional temperature and precipitation over South America. Climate Dynamics 45, 21932212.
Sarmiento, G., Monasterio, M., 1975. A critical consideration of the environmental conditions associated with the occurrence of savanna ecosystems in tropical America. In: Golley, F.B., Medina, E. (Eds.), Tropical Ecological Systems. Ecological Studies (Analysis and Synthesis) 11. Springer, Berlin, pp. 223250.
Seltzer, G., Rodbell, D., Burns, S., 2000. Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28, 3538.
Taylor, Z.P., Horn, S.P., Mora, C.I., Orvis, K.H., Cooper, L.W., 2010. A multi-proxy palaeoecological record of late-Holocene forest expansion in lowland Bolivia. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 98107.
Thompson, L.G., 1998. A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 18581864.
Wallis, L., 2003. An overview of leaf phytolith production patterns in selected northwest Australian flora. Review of Palaeobotany and Palynology 125, 201248.
Watling, J., Iriarte, J., 2013. Phytoliths from the coastal savannas of French Guiana. Quaternary International 287, 162180.
Watling, J., Iriarte, J., Whitney, B.S., Consuelo, E., Mayle, F.E., Castro, W., Schaan, D., Feldpausch, T.R., 2016. Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions II: southwestern Amazonian forests. Review of Palaeobotany and Palynology 226, 3043.
Whitlock, C., Larsen, C., 2001. Charcoal as a fire proxy. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Change Using Lake Sediments. Vol. 3, Terrestrial, Algal, and Siliceous Indicators. KluwerAcademic Publishers, Dordrecht, Netherlands.
Whitney, B.S., Dickau, R., Mayle, F.E., Soto, J.D., Iriarte, J., 2013. Pre-Columbian landscape impact and agriculture in the Monumental Mound region of the Llanos de Moxos, lowland Bolivia. Quaternary Research 80, 207217.
Whitney, B.S., Mayle, F.E., 2012. Pediastrum species as potential indicators of lake-level change in tropical South America. Journal of Paleolimnology 47, 601615.
Whitney, B.S., Mayle, F.E., Burn, M.J., Guillén, R., Chavez, E., Pennington, R.T., 2014. Sensitivity of Bolivian seasonally-dry tropical forest to precipitation and temperature changes over glacial–interglacial timescales. Vegetation History and Archaeobotany 23, 114.
Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Pennington, R.T., Metcalfe, S.E., 2011. A 45kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 177192.


Long-term impacts of mid-Holocene drier climatic conditions on Bolivian tropical dry forests

  • Heather J. Plumpton (a1), Francis E. Mayle (a1) and Bronwen S. Whitney (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed