Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T12:58:10.777Z Has data issue: false hasContentIssue false

A Late-Glacial/Holocene Pollen Record from the Eastern Andes of Northern Peru

Published online by Cambridge University Press:  20 January 2017

Barbara C.S. Hansen
Affiliation:
Limnological Research Center, 220 Pillsbury Hall, University of Minnesota, Minneapolis, Minnesota 55455
Donald T. Rodbell
Affiliation:
Department of Geology, Butterfield Hall, Union College, Schenectady, New York 12308

Abstract

A pollen and sediment record of a core 4.2-m-long from Laguna Baja (7°42′ S, 77°32′ W, 3575 m) in the Cordillera Oriental of northern Peru suggests several episodes of major vegetational and climatic change over the past 13,000 yr. The oldest pollen assemblage consists of a mixture of paramo elements (tropical alpine vegetation), including high percentages of Poaceae (40%) that decline upward, moist montane forest (Compositae and Polylepis), and wet montane forest (e.g., Hedyosmum and Podocarpaceae). Organic carbon content range from <2% to 8%. About 11,600 yr B.P. this mixed pollen assemblage was replaced by Poaceae (>60%), with high percentages of Jamesonia, a fern characteristic of paramo and decreasing values of Plantago tubulosa and the wet montane forest elements Hedyosmum and Podocarpaceae. Charcoal percentages are at a maximum during this period, magnetic susceptibility and sand percentages are high, and percentages of organic matter are low. Several explanations for these changes are possible, including a reduction in temperature and moisture, more frequent periods of aridity with increased fires, or natural succession. The Holocene record begins with pronounced increases in organic carbon and pollen of wet montane forest, primarily Hedyosmum , Podacarpaceae, and Urticales. High values of Podocarpaceae pollen (>35%) and a decline in charcoal suggest temperature and moisture levels above modern-day values. Wet montane forest pollen remain high and charcoal values are low from about 10,000 to 6000 yr B.P., suggesting that warm and moist conditions prevailed for about 4000 yr. Subsequently Podocarpaceae and Urticales decline, and for a brief time Alnus is prominent in the pollen record. Following the Alnus maximum at about 5000 yr B.P., Poaceae, Ambrosia and Chenopodiaceae/Amaranthaceae become frequent. Increased paramo and disturbance indicator pollen suggest increased anthropogenic activities in this region from the middle Holocene to the present.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absy, M. L. (1979). “A Palynological Study of Holocene Sediments in the Amazon Basin,” Ph.D. dissertation, University of Amsterdam.Google Scholar
Ashworth, A. C. Markgraf, V., and Villagran, C. (1991). Late Quaternary climatic history of the Chilean Channels based on fossil pollen and beetle analyses, with an analysis of the modern vegetation and pollen rain. Journal of Quaternary Science 6 , 279291.Google Scholar
Birkeland, P. W. Rodbell, D. T., and Short, S. K. (1989). Radiocarbon dates on deglaciation, Cordillera Central, northern Peruvian Andes. Quaternary Research 32 , 111113.Google Scholar
Bush, M. B., and Colinvaux, P. A. (1988). A 7000-year pollen record from the Amazon lowlands, Ecuador. Vegetatio 76 , 141154.Google Scholar
Clapperton, C. M. (1990). Quaternary glaciations of the Southern Hemisphere: An overview. Quaternary Science Reviews 9 , 299304.Google Scholar
Cleef, A. M. (1981). “The Vegetation of the Paramos of the Colombian Cordillera Oriental.” Dissertations Botankae 61 , 320 pp. J. Cramer, Vaduz.Google Scholar
Cuatracasas, J. (1968). Paramo vegetation and its life forms. Colloquium Ceographicum 9 , 163186.Google Scholar
Cwynar, L. Burden, F., and McAndrews, J. H. (1979). An inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Canadian Journal of Earth Sciences 16 , 11151120.Google Scholar
Ellenberg, H. (1979). Man’s influence on tropical mountain ecosystems in South America, Journal of Ecology 67 , 401416.Google Scholar
Faegri, K., and Iverseti, J. (1975). “Textbook of Pollen Analysis.” Hafner Press, New York.Google Scholar
Frost, I. (1988). A Holocene sedimentary record from Anangucocha in the Ecuadorian Amazon. Ecology 69 , 6673.Google Scholar
Grabandt, R. A. J. (1980). Pollen rain in relation to arboreal vegetation in the Colombian Cordillera Oriental. Review of Palaeobotany and Palynology 29 , 65147.Google Scholar
Hansen, B. C. (in press). A review of late-glacial pollen records from Ecuador and Peru with reference to the Younger Dryas Event. Quaternary Science Reviews. Google Scholar
Hansen, B. C. S. Wrighî, H. E. Jr., and Bradbury, J. P. (1984). Pollen studies in the Junin Area, central Peruvian Andes. Geological Society of America Bulletin 95 , 14541465.Google Scholar
Hansen, B. C. S., Seltzer, G. O., and Wright, H. E. Jr. (1994). Late-Quaternary vegetation change in the central Peruvian Andes. Palaeogeography, Palaeoclimatology, and Palaeoecology 109 , 263285.Google Scholar
Hastenrath, S. L., and Kutzbach, J. (1985). Late Pleistocene climate and water budget of the South American Altiplano. Quaternary Research 24 , 249256.Google Scholar
Heine, J. (1993). A réévaluation of the evidence for a Younger Dryas Climatic reversal in the tropical Andes, Quaternary Science Reviews 12 , 769780.Google Scholar
Heusser, C. J. (1984). Late-glacial-Holocene climate of the lake district of Chile, Quaternary Research 22 , 7790.Google Scholar
Heusser, C. J. (1989). Southern westerlies during the last glacial maximum, Quaternary Research 31 , 423125.Google Scholar
Heusser, C. J., and Rabassa, J. (1987). Cold climatic episode of Younger Dryas age in Tierra del Fuego. Nature 328 , 609611.Google Scholar
Hooghiemstra, H. (1983). Pollen morphology of the Plantago species of the Colombian Andes and its application to fossil material. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales 15 , 4166.Google Scholar
Kuhry, P. (1988). “Palaeobotanical-Palaeoecological Studies of Tropical High Andean Peat Bog Sections (Cordillera Oriental, Colombia).” Ph.D. dissertation, University of Amsterdam; Dissertationes Botanicae 116 241 pp. J. Cramer, Berlin/Stuttgart.Google Scholar
Kuhry, P. Hooghiemstra, H., van Geel, B., and van der Hammen, T. (1993). El Abra Stadial in the eastern Cordillera of Colombia (South America). Quaternary Science Reviews 12 , 333343.Google Scholar
Lumley, S.H., and Switsur, R. (1993). Late Quaternary chronology of the Taitao Peninsula, southern Chile. Journal of Quaternary Science 8 , 161165.Google Scholar
Markgraf, V. (1980). Pollen dispersal in a mountain area. Grmto 19 , 127146.Google Scholar
Markgraf, V. (1991). Younger Dryas in southern South America? Boreas 20 , 6369.Google Scholar
Martin, L. Fournier, M. Mourguiart, P. Sifeddine, A. Turcq, B. Absy, M. L., and Flexor, J-M. (1993). Southern Oscillation signal in South American palaeoclimatic data of the last 7000 years. Quaternary Research 39 , 338346.Google Scholar
Mercer, J. H., and Palacios, O. (1977). Radiocarbon dating of the last glaciation in Peru. Geology 5 , 600604.Google Scholar
Miller, D. C. Birkeland, P. W., and Rodbell, D. T. (1993). Evidence for Holocene stability of steep slopes, northern Peruvian Andes, based on soils and radiocarbon dates. Catena 20 , 112.Google Scholar
Millspaugh, S. H. and Whitlock, C. (in press). A 750-yr fire history based on lake sediment records in central Yellowstone National Park. The Holocene. Google Scholar
Pearsal, D. M. (1980). Pachamachay ethnobotanical report: Plant utilization in a hunting base camp. In “Prehistoric hunters of the high Andes” (Rick, J. K., Ed.), pp. 191232. Academic Press, New York.Google Scholar
Pearsal, D. M., (1983). Evaluating the stability of subsistence strategies by use of paleoethnobotanical data. Journal of Ethnobiology 3 , 121137.Google Scholar
Piperno, D. R. Bush, M. B., and Colinvaux, P. A. (1990). Paleoenvironments and human occupation in the late-glacial Panama. Quaternary Research 33 , 108116.Google Scholar
Rodbell, D. T. (1993). The timing of the last deglaciation in Cordillera Oriental, northern Peru, based on glacial geology and lake sedimentology. Geological Society of American Bulletin 105 , 123134.Google Scholar
Seltzer, G. O., and Hastorf, C. (1990). Climatic change and its effect on pre-hispanic agriculture in the Central Peruvian Andes. Journal of Field Aracheology 17 , 397414.Google Scholar
Singer, M. J., and Janitsky, P., eds. (1986). Field and laboratory procedures used in a soil chronosequence study. U.S. Geological Survey Bulletin 1648 , 49.Google Scholar
Van Geel, B., and van der Hammen, T. (1973). Upper Quaternary vegetational and climatic sequence of the Fiiquene area (Eastern Cordillera, Colombia). Palaeogeography, Palaeoclimalology and Palaeoecology 14 , 992.Google Scholar
Van del Hammen, T. Barelds, J. De Jong, H. De Veer, A. A., (1980/1981). Glacial sequence and environmental history in the Sierra Nevada del Cocuy (Colombia). Palaeogeography, Palaeoclimalology and Palaeoecology 32 , 247340.Google Scholar
Wright, H. E. Jr. (1983). Late-Pleistoeene glaciation and climate around the Junin Plain, central Peruvian highlands. Geografiska Annaler 65A, 3543.Google Scholar
Wright, H. E. Jr. (1984). Late-glacial and late Holocene moraines in the Cerros Cuchpanga, central Peru. Quaternary Research 21 , 275285.Google Scholar
Young, K. R. (1990). Biogeography and ecology of a timberline forest in north-central Peru. Ph.D. dissertation, University of Colorado, Boulder.Google Scholar
Young, K. R. (1991). Floristic diversity on the eastern slopes of the Peruvian Andes. Candollea 46 , 125143.Google Scholar
Young, K. R. (1992). Biogeography of the montane forest zone of the eastern slopes of Peru. Memorias del Museo de Historia Natural 21 , 119140.Google Scholar
Young, K. R., and León, B. (1990). Catalógo de las plantas de la zona alta del Parque Nacional Río Abiseo, Perú. Publicaciones del Museo de Historia Natural B34, 137.Google Scholar
Young, K. R., and León, B. (1991). Diversity, ecology and distribution of high-elevation Pteridophytes within Río Abiseo National Park, north-central Perú. Fern Gazette 14 , 2539.Google Scholar