Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T08:52:28.064Z Has data issue: false hasContentIssue false

Late-glacial fluctuations of two southern Patagonia outlet glaciers revealed by high-resolution seismic surveys

Published online by Cambridge University Press:  16 April 2020

Emanuele Lodolo*
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/C, 34010 - Sgonico (Trieste), Italy
Jorge Lozano
Affiliation:
Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Intendente Güiraldes 2160, C1428EHA - Buenos Aires, Argentina
Federica Donda
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/C, 34010 - Sgonico (Trieste), Italy
Donald Bran
Affiliation:
Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Intendente Güiraldes 2160, C1428EHA - Buenos Aires, Argentina
Luca Baradello
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/C, 34010 - Sgonico (Trieste), Italy
Alejandro Tassone
Affiliation:
Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Intendente Güiraldes 2160, C1428EHA - Buenos Aires, Argentina
Roberto Romeo
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/C, 34010 - Sgonico (Trieste), Italy
Marcelo Paterlini
Affiliation:
Servicio de Hidrografía Naval, Av. Montes de Oca 2124, C1270ABV - Buenos Aires, Argentina
Maurizio Grossi
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/C, 34010 - Sgonico (Trieste), Italy
Mauro Caffau
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/C, 34010 - Sgonico (Trieste), Italy
Juan Francisco Vilas
Affiliation:
Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, Intendente Güiraldes 2160, C1428EHA - Buenos Aires, Argentina
*
*Corresponding author at: Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante, Trieste, Italy. E-mail address: elodolo@inogs.it (E. Lodolo).

Abstract

Lago Argentino hosts various calving glaciers, among them the famous Perito Moreno. Whereas the onland late Pleistocene–Holocene glacial history is rather well constrained, the submerged glacier-related features were until now undisclosed. Here we present a series of high-resolution seismic profiles revealing moraine bodies associated with the late-glacial glacier dynamics and the first bathymetric map of the Brazo Rico and Brazo Sur, the two southern arms of Lago Argentino. At the eastern termination of Brazo Rico, we identified at the lake floor the submerged expression of the Puerto Bandera 3 moraine mapped onshore, which represents the oldest event (12,660 ± 70 cal yr BP oldest minimum age) recognized in this lake arm, and seven other younger events expressed by a series of terminal and recessional moraines. Along the Brazo Sur, few moraine bodies have been imaged by seismic data. Here, the youngest temporal constraint comes from the Frías moraine (ca. 6000 cal yr BP), which closes off the southern end of the Brazo Sur. At the confluence of the two arms, the Perito Moreno and the former Frías glacier merged and flowed toward east during their late-glacial maximum advance (i.e., Puerto Bandera 1 moraine). The subaqueous evidence of moraine bodies testifies to the occurrence of previously undocumented pulses of the Perito Moreno and former Frías glaciers within the general phase of late Pleistocene–Holocene regression.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aarseth, I., Austbø, P.K., Risnes, H., 1997. Seismic stratigraphy of Younger Dryas ice-marginal deposits in western Norwegian fjords. Norsk Geologisk Tidsskrift 77, 6585.Google Scholar
Aniya, M., Sato, H., Naruse, R., Skvarca, P., Casassa, G., 1997. Recent glacier variations in the Southern Patagonia Icefield, South America. Arctic and Alpine Research 29, 112.CrossRefGoogle Scholar
Barnes, P.M., Pickrill, R.A., Bostock, H.C., Dlabola, E.K., Gorman, A.R., Wilson, G.S., 2016. Relict proglacial deltas in Bradshaw and George sounds, Fiordland, New Zealand. In: Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K., Hogan, K.A. (Eds.). Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society Memoir 46. Geological Society of London, London, pp. 9192.Google Scholar
Benn, D.I., Evans, D.J.A., 2010. Glaciers and Glaciation. 2nd Edition, Hodder Education, London. https://doi.org/10.4324/9780203785010.Google Scholar
Bertrand, S., Castiaux, J., Juvigné, E., 2008. Tephrostratigraphy of the late glacial and Holocene sediments of Puyehue Lake (Southern Volcanic Zone, Chile, 40°S). Quaternary Research 70, 343357.CrossRefGoogle Scholar
Bradwell, T., Stoker, M., 2016. Recessional moraines in nearshore waters, northern Scotland. In: Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K., Hogan, K.A. (Eds.). Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society Memoir 46. Geological Society of London, London, pp. 6364.Google Scholar
Caldenius, C., 1932. Las glaciaciones cuaternarias en la Patagonia y Tierra del Fuego. Geografiska Annaler 14, 1164.Google Scholar
Carlson, A.E., 2013. The Younger Dryas climate event. In Elias, S.A. (Ed.). The Encyclopedia of Quaternary Science. Elsevier, Amsterdam, pp. 126134.CrossRefGoogle Scholar
Del Valle, R., Skvarca, P., Manzini, M.V., Lusky, L., 1995. A preliminary study of sediment cores from Lago Argentino and fluctuations of Moreno glaciar, Patagonia. Bulletin of Glacier Research 13, 121126.Google Scholar
Dowdeswell, J.A., Solheim, A., Ottesen, D., 2016. Rhombohedral crevasse-fill ridges at the marine margin of a surging Svalbard ice cap. In: Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K., Hogan, K.A. (Eds.). Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society Memoir 46. Geological Society of London, London, pp. 7374.Google Scholar
Dowdeswell, J.A., Vásquez, M., 2013. Submarine landforms in the fjords of southern Chile: implications for glacimarine processes and sedimentation in a mild glacier-influenced environment. Quaternary Science Reviews 64, 119.CrossRefGoogle Scholar
Eilertsen, R.S., Longva, O., Corner, G.D., 2016. A Younger Dryas moraine ridge and fjiord delta in Valldal, Norddalsfjorden, Møreog Romsdal, Norway. In: Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K., Hogan, K.A. (Eds.). Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society Memoir 46. Geological Society of London, London, pp. 9596.Google Scholar
Esteban, F.D., Tassone, A., Lodolo, E., Menichetti, M., Lippai, H., Waldmann, N., Darbo, A., Baradello, L., Vilas, J.F., 2014. Basement geometry and sediment thickness of Lago Fagnano (Tierra del Fuego). Andean Geology 41, 293313.CrossRefGoogle Scholar
Fabbri, S.C., Buechi, M.W., Horstmeyer, H., Hilbe, M., Hübscher, C., Schmelzbach, C., Weiss, B., Anselmetti, F.S., 2018. A subaquatic moraine complex in overdeepened Lake Thun (Switzerland) unravelling the deglaciation history of the Aare Glacier. Quaternary Science Reviews 187, 6279.CrossRefGoogle Scholar
Feruglio, E., 1944. Estudios geologicos y glaciologicos en la region del Lago Argentino. Boletín Academia Nacional de Ciencias, Cordoba, Argentina 37, 1208.Google Scholar
Fogwill, C., Kubik, P.W., 2005. A glacial stage spanning the Antarctic Cold Reversal in Torres Del Paine (51°S), Chile, based on preliminary cosmogenic exposure ages. Geografiska Annaler: Series A, Physical Geography 87, 403408.CrossRefGoogle Scholar
Foresta, L., Gourmelen, N., Weissgerber, F., Nienow, P., Williams, J.J., Shepherd, A., Drinkwater, M.R., Plummer, S., 2018. Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry. Remote Sensing of Environment 211, 441455.CrossRefGoogle Scholar
García, J., Hall, B., Kaplan, M., Vega, R., Strelin, J., 2014. Glacial geomorphology of the Torres del Paine region (southern Patagonia): implications for glaciation, deglaciation and paleolake history. Geomorphology 204, 599616.CrossRefGoogle Scholar
Geirsdóttir, Á., Miller, G.H., Larsen, D.J., 2016. Landforms in Hvítárvatn, central Iceland, produced by recent advances of surging and non-surging glaciers. In: Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K., Hogan, K.A. (Eds.). Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society Memoir 46. Geological Society of London, London, pp. 143146.Google Scholar
Glasser, N.F., Harrison, S., Jansson, K., Anderson, K., Cowley, A., 2011. Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nature Geoscience 4, 303307.CrossRefGoogle Scholar
Graham, A., Hodgson, D., 2016. Terminal moraines in the fjord basins of sub-Antarctic South Georgia. In: Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K., Hogan, K.A. (Eds.). Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society Memoir 46. Geological Society of London, London, pp. 6768.Google Scholar
Guerrido, C.M., Villalba, R., Rojas, F., 2014. Documentary and tree-ring evidence for a long-term interval without ice impoundments from Glaciar Perito Moreno, Patagonia, Argentina. The Holocene 24, 16861693.CrossRefGoogle Scholar
Hajdas, J., Bonani, G., Moreno, P.I., Ariztegui, D., 2003. Precise radiocarbon dating of late-glacial cooling in mid-latitude South America. Quaternary Research 59, 7078.CrossRefGoogle Scholar
Heusser, C., Lowell, T., Heusser, L., Hauser, A., Andersen, B., Denton, G., 1996. Full-glacial-late-glacial palaeoclimate of the southern Andes: evidence from pollen, beetle and glacial records. Journal of Quaternary Science 11, 73184.3.0.CO;2-5>CrossRefGoogle Scholar
Hilbe, M., Strupler, M., Hansen, L., Eilersten, R., Van Daele, M., De Batist, M., Anselmetti, F., 2016. Moraine ridges in fjord-type, perialpine Lake Lucerne, central Switzerland. In: Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K., Hogan, K.A. (Eds.). Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society Memoir 46. Geological Society of London, London, pp. 6970.Google Scholar
Jomelli, V., Favier, V., Vuille, M., Braucher, R., Martin, L., Blard, P., Colose, C. et al. , 2014. A major advance of tropical Andean glaciers during the Antarctic cold reversal. Nature 513, 224228.CrossRefGoogle Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., et al. , 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793796.CrossRefGoogle ScholarPubMed
Kaplan, M.R., Schaefer, J.M., Strelin, J.A., Denton, G.H., Anderson, R.F., Vandergoes, M.J., Finkel, R.C., et al. , 2016. Patagonian and southern South Atlantic view of Holocene climate. Quaternary Science Reviews 141, 112125.CrossRefGoogle Scholar
Kaplan, M.R., Strelin, J., Schaefer, J.M., Denton, G.H., Finkel, R.C., Schwartz, R., Vandergoes, M., Putnam, A.E., 2011. The 10Be production rate in southern South America and the coherency of late glacial chronologies. Earth and Planetary Science Letters 309, 2132.CrossRefGoogle Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H., Stoner, J., 2004. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 19591962.CrossRefGoogle ScholarPubMed
Lastras, G., Dowdeswell, J.A., 2016. Terminal and recessional moraines in the fjords of southern Chile. In: Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K., Hogan, K.A. (Eds.). Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society Memoir 46. Geological Society of London, London, pp. 6566.Google Scholar
Liss, C., 1970. Der Morenogletcher in der Patagonischen Kordillere. Zeitschrift für Gletschekunde und Glazialgeologie 4, 161180.Google Scholar
Lovecchio, J., Strelin, J., Astini, A., 2008. Cronología de las morenas del Cachorro, Lago Argentino, provincia de Santa Cruz. Actas XVII Congreso Geológico Argentino, San Salvador de Jujuy, 7-10 October 2008, 713-714.Google Scholar
Malagnino, E.C., Strelin, J.A., 1992. Variations of Upsala Glacier in southern Patagonia since the late Holocene to the present. In: Naruse, R., Aniya, M. (Eds.), Glaciological Researches in Patagonia, 1990. Japanese Society of Snow and Ice, pp. 6185.Google Scholar
Massaferro, J.I., Moreno, P.I., Denton, G.H., Vandergoes, M., Dieffenbacher-Krall, A., 2009. Chironomid and pollen evidence for climate fluctuations during the last glacial termination in NW Patagonia. Quaternary Science Reviews 28, 517525.CrossRefGoogle Scholar
Menounos, B., Clague, J.J., Osborn, G., Thompson Davis, P., Ponce, F., Goehring, B., Maurer, M., et al. ., 2013. Latest Pleistocene and Holocene glacier fluctuations in southernmost Tierra del Fuego, Argentina. Quaternary Science Reviews 77, 7079.CrossRefGoogle Scholar
Mercer, J.H., 1965. Glacier variations in southern Patagonia. Geographical Review 55, 390-413.CrossRefGoogle Scholar
Mercer, J.H., 1976. Glacial history of southernmost South America. Quaternary Research 6, 125166.CrossRefGoogle Scholar
Mercer, J.H., Ager, T., 1983. Glacial and floral changes in Southern Argentina since 14,000 years ago. National Geographic Society Research Reports 15, 457477.Google Scholar
Minowa, M., Sugiyama, S., Sakakibara, D., Skvarca, P., 2017. Seasonal variations in ice-front position controlled by frontal ablation at Glaciar Perito Moreno, the Southern Patagonia Icefield. Frontiers in Earth Science 5. https://doi.org/10.3389/feart.2017.00001.CrossRefGoogle Scholar
Moreno, P.I., 2004. Millennial-scale climate variability in northwest Patagonia over the last 15000 yr. Journal of Quaternary Science 19, 3547.CrossRefGoogle Scholar
Moreno, P.I., Kaplan, M.R., François, J.P., Villa-Martínez, R., Moy, C., Stern, C.R., Kubik, P., 2009. Renewed glacial activity during the Antarctic Cold Reversal and persistence of cold conditions until 11.5 ka in southwestern Patagonia. Geology 37, 375378.CrossRefGoogle Scholar
Morgan, V.I., 2009. Antarctic Cold Reversal. In: Gornitz, V. (Ed.). Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht, Netherlands, pp. 2224.CrossRefGoogle Scholar
Pedro, J.B., Bostock, H.C., Bitz, C.M., He, F., Vandergoes, M.J., Steig, E.J.,Chase, B.M., et al. , 2016. The spatial extent and dynamics of the Antarctic Cold Reversal. Nature Geoscience 9, 5155.CrossRefGoogle Scholar
Pinson, L.J.W., Vardy, M.E., Dix, J.K., Henstock, T.J., Bull, J.M., MacLachlan, S.E., 2012. Deglacial history of glacial lake Windermere, UK: implications for the central British and Irish Ice Sheet. Journal of Quaternary Science 28, 8394.CrossRefGoogle Scholar
Rignot, E., Rivera, A., Casassa, G., 2003. Contribution of the Patagonia icefields of South America to sea level rise. Science 302, 434436.CrossRefGoogle ScholarPubMed
Sakakibara, D., Sugiyama, S., 2014. Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011. Journal of Geophysical Research, Earth Surface 119, 25412554.CrossRefGoogle Scholar
Shaw, J., 2016. Fjord-mouth submarine moraines, SW Newfoundland. In: Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K., Hogan, K.A. (Eds.). Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society Memoir 46. Geological Society of London, London, pp. 7980.Google Scholar
Skvarca, P., Naruse, R., 1997. Dynamic behavior of Glaciar Perito Moreno, southern Patagonia. Annals of Glaciology 24, 268271.CrossRefGoogle Scholar
Strelin, J.A., Denton, G.H., Vandergoes, M.J., Ninnemann, U.S., Putnam, A.E., 2011. Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian Icefield, Argentina. Quaternary Science Reviews 30, 25512569.CrossRefGoogle Scholar
Strelin, J.A., Kaplan, M.R., Vandergoes, M.J., Denton, G.H., Shaefer, J.M., 2014. Holocene glacier history of the Lago Argentino basin, Southern Patagonian Icefield. Quaternary Science Reviews 101, 125145.CrossRefGoogle Scholar
Strelin, J.A., Malagnino, E.C., 1996. Glaciaciones Pleistocenas de Lago Argentino y Alto Valle del Río Santa Cruz. Actas XIII Congreso Geológico Argentino, Buenos Aires, 13-18 October, 1996, 4, 311325.Google Scholar
Strelin, J.A., Malagnino, E.C., 2000. The late-glacial history of Lago Argentino, Argentina, and age of the Puerto Bandera moraines. Quaternary Research 54, 339347.CrossRefGoogle Scholar
Waldmann, N., Ariztegui, D., Anselmetti, F.S., Coronato, A., Austin, J.A. Jr., 2010. Geophysical evidence of multiple glacier advances in Lago Fagnano (54°S), southernmost Patagonia. Quaternary Science Reviews 29, 11881200.CrossRefGoogle Scholar
Warren, C., Aniya, M., 1999. The calving glaciers of southern South America. Global and Planetary Change 22, 5977.CrossRefGoogle Scholar
White, A., Copland, L., 2013. Spatial and temporal variations of glacier extent across the Southern Patagonian Icefield since the 1970s. The Cryosphere Discussion 7, 134.CrossRefGoogle Scholar
Zanolla, C., Lodolo, E., Lippai, H., Tassone, A., Menichetti, M., Baradello, L., GrossI, M., Hormaechea, H.L., 2011. Bathymetric map of Lago Fagnano (Tierra del Fuego Island). Bollettino di Geofisica Teorica ed Applicata 52, 18.Google Scholar