Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T02:52:56.026Z Has data issue: false hasContentIssue false

Late Quaternary paleoenvironments and paleoclimatic conditions in the distal Andean piedmont, southern Mendoza, Argentina

Published online by Cambridge University Press:  20 January 2017

Alfonsina Tripaldi*
Affiliation:
Dept. of Geology, CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
Marcelo A. Zárate
Affiliation:
INCITAP, CONICET, Universidad Nacional de La Pampa Avenida Uruguay 151, Santa Rosa, 6300 La Pampa, Argentina
George A. Brook
Affiliation:
Department of Geography, University of Georgia, Athens, GA 30602, USA
Guo-Qiang Li
Affiliation:
Center for Arid Environment and Paleoclimate Research (CAEP), MOE Key Laboratory of West China's Environmental System, Lanzhou University, 222 Tianshuinanlu, Lanzhou, Gansu, 730000, China
*
Corresponding author. Fax: + 54 11 4576 3329. E-mail address:alfo@gl.fcen.uba.ar (A. Tripaldi), mzarate@exactas.unlpam.edu.ar (M.A. Zárate), gabrook@uga.edu (G.A. Brook).

Abstract

The Andean piedmont of Mendoza is a semiarid region covered by extensive and partially vegetated dune fields consisting of mostly inactive aeolian landforms of diverse size and morphology. This paper is focused on the San Rafael plain (SRP) environment, situated in the distal Andean piedmont of Mendoza (34° 30′S), and reports the sedimentology and OSL chronology of two representative exposures of late Quaternary deposits, including their paleoenvironmental and paleoclimatic significance. Eleven facies, including channel, floodplain, fluvio–aeolian interaction, and reworked pyroclastic and aeolian deposits, were described and grouped into two facies associations (FA1 and FA2). FA1 was formed by unconfined sheet flows, minor channelized streams and fluvial–aeolian interaction processes. FA2 was interpreted as aeolian dune and sand-sheet deposits. OSL chronology from the SRP sedimentary record indicates that between ca. 58–39 ka and ca. 36–24 ka (MIS 3), aggradation was governed by ephemeral fluvial processes (FA1) under generally semiarid conditions. During MIS 2, the last glacial maximum (ca. 24–12 ka), a major climatic shift to more arid conditions is documented by significant aeolian activity (FA2) that became the dominant sedimentation process north of the Diamante–Atuel fluvial system. The inferred paleoenvironmental conditions from the SRP sections are in broad agreement with regional evidence.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, E., Del Valle, H., Roig, F., Torres, L., Ares, J., and Godagnone, R. Overview of the geography of the Monte Desert biome (Argentina). Journal of Arid Environment 73, (2009). 144153.CrossRefGoogle Scholar
Ahlbrandt, T.S., and Fryberger, S. Introduction to eolian deposits. Scholle, P.A., and Spearing, D. Sandstone Depositional Environments. American Association of Petroleum Geologists (AAPG), Tulsa, Memoir 31 (1982). 1147.Google Scholar
Aitken, M.J. Thermoluminescence Dating. (1985). Academic Press, 359 pp.Google Scholar
Aitken, M.J. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence. (1998). Oxford University Press, 267 pp.Google Scholar
Blasi, A., Castiñeira Latorre, C., del Puerto, L., Prieto, A., Fucks, E., De Francesco, C., Hanson, P.R., García-Rodriguez, F., Huarte, R., Carbonari, J., and Young, A. Paleoambientes de la cuenca media del río Luján (buenos Aires, Argentina) durante el último período glacial (EIO 2–4). Latin American journal of Sedimentology and Basin Análisis 17, (2010). 95111.Google Scholar
Bøtter-Jensen, L., Duller, G.A.T., Murray, A.S., and Banerjee, D. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating. Radiation Protection Dosimetry 84, (1999). 335340.CrossRefGoogle Scholar
Bridge, J.S. Rivers and Floodplains, Forms, Processes, and Sedimentary Record. (2003). Wiley-Blackwell, 504 pp.Google Scholar
Bull, W.B. Discontinuous ephemeral streams. Geomorphology 19, (1997). 227276.Google Scholar
Bullard, J.E., and Livingstone, I. Interactions between aeolian and fluvial systems in dryland environments. Area 34, (2002). 816.Google Scholar
Cabrera, A. Regiones Fitogeograficas Argentinas. Enciclopedia Argentina de Agricultura y Ganadería. (1971). ACME, Buenos Aires, Argentina. 185. Tomo II, Fasc. I Google Scholar
Cain, S.A., and Mountney, N.P. Spatial and temporal evolution of a terminal fluvial fan system: the Permian Organ Rock Formation, South-east Utah, USA. Sedimentology 56, (2009). 17741800.Google Scholar
Cas, R.A.F., and Wright, J.V. Volcanic Successions. (1987). Allen & Unwin, London. 528 pp.Google Scholar
Clapperton, C.M. Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, (1993). 189208.CrossRefGoogle Scholar
Colls, A.E., Stokes, S., Blum, M.D., and Straffin, E. Age limits on the Late Quaternary evolution of the upper Loire River. Quaternary Science Reviews 20, 5–9 (2001). 743750.Google Scholar
D'Antoni, H. Pollen analysis of Gruta del Indio. Quaternary South America and Antartica Peninssula 1, (1983). 83104.Google Scholar
De Francesco, C.G., Zárate, M.A., and Miquel, S.E. Late Pleistocene mollusc assemblages inferred from paleoenvironments from the Andean Piedmont of Mendoza, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 257, (2007). 461469.CrossRefGoogle Scholar
Duller, G.A.T. Luminescence Analyst computer programme V2.18. (1999). Department of Geography and Environmental Sciences, University of Wales, Aberystwyth. 528 pp.Google Scholar
Espizúa, L.E. Holocene glacier chronology of Valenzuela Valley, Mendoza Andes, Argentina. The Holocene 15, 7 (2005). 10791085.Google Scholar
Folk, R.L., and Ward, W.C. Brazos River bar — a study in the significance of grain-size parameters. Journal of Sedimentary Petrology 27, 1 (1957). 327.CrossRefGoogle Scholar
Frechen, M., Seifert, B., Sanabria, J.A., and Argüello, G.L. Chronology of late Pleistocene Pampa loess from the Córdoba area in Argentina. Journal of Quaternary Science 24, (2009). 761772.Google Scholar
Fryberger, S.G., Ahlbrandt, T.S., and Andrews, S.A. Origin, sedimentary features, and significance of low-angle eolian “sand sheet” deposits, Great Sand Dunes National Monument and Vicinity, Colorado. Journal of Sedimentary Petrology 49, 3 (1979). 733746.Google Scholar
Fucks, E., and Deschamps, C.M. Depósitos continentales cuaternarios en el noroeste de la provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 63, 3 (2008). 326343.Google Scholar
Glennie, K.W. Desert sedimentary environments. Developments in Sedimentology 14, (1970). Elsevier, 222 pp.Google Scholar
González Díaz, E.F. Descripción geológica de la hoja 27d, San Rafael, provincia de Mendoza. Boletín 132. (1972). Ministerio de Industria y Minería — Servicio Nacional Minero Geológico, Buenos Aires. 144 Google Scholar
González Díaz, E.F., and Fauqué, L. Geomorfología. Ramos, V. Geología y Recursos Naturales de Mendoza, XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos. (1993). Relatorio, 217234.Google Scholar
Gosse, J., (1994). Relative dating of Quaternary deposits in the Rio Atuel Valley, Mendoza, Argentina. PhD thesis, Lehigh University Bethlehem, PA., 175 pp.Google Scholar
Guccione, M.J. Grain-size distribution of overbank sediment and its use to locate channel positions. Marzo, M., and Puigdefábregas, C. Alluvial sedimentation. International Association of Sedimentologists Special Publication 17, (1993). 185194.Google Scholar
Hampton, B.A., and Horton, B.K. Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology 54, 5 (2007). 11211148.CrossRefGoogle Scholar
Hein, F.J., and Walker, R.G. Bar evolution and development of stratification in the gravelly, braided Kicking Horse River, British Columbia. Canadian Journal Earth Science 14, (1977). 562570.CrossRefGoogle Scholar
Hildreth, W., and Drake, R.E. Volcán Quizapu, Chilean Andes. Bulletin of Volcanology 54, (1992). 93125.Google Scholar
Hunter, R.E. Terminology of cross-stratified sedimentary layers and climbing-ripple structures. Journal of Sedimentary Petrology 47, (1977). 697706.Google Scholar
Hunter, R.E. Basic types of stratification in small eolian dunes. Sedimentology 24, (1977). 361387.Google Scholar
Iriondo, M. Climatic changes in the South American plains: records of a continent-scale oscillation. Quaternary International 57, 58 (1999). 93112.Google Scholar
Kemp, R.A., Toms, P.S., King, M., and Kröhling, D.M. The pedosedimentary evolution and chronology of Tortugas, a Late Quaternary type-site of the northern Pampa, Argentina. Quaternary International 114, 1 (2004). 101112.Google Scholar
Kemp, R.A., Zárate, M.A., Toms, P., King, M., Sanabria, J., and Arguello, G. Late Quaternary paleosols, stratigraphy and landscape evolution in the Northern Pampa, Argentina. Quaternary Research 66, 1 (2006). 119132.CrossRefGoogle Scholar
Kocurek, G., and Nielson, J. Conditions favourable for the formation of warm-climate aeolian sand sheets. Sedimentology 33, (1986). 795816.Google Scholar
Krömer, R. Los sedimentos cuaternarios del sudeste de la llanura mendocina. Implicancias paleoclimáticas. Multequina 5, (1996). 4955.Google Scholar
Langford, R.P. Fluvial-aeolian interactions: part I, modern systems. Sedimentology 36, (1989). 10231035.Google Scholar
Markey, B.G., Bøtter-Jensen, L., and Duller, G.A.T. A new flexible system for measuring thermally and optically stimulated luminescence. Radiation Measurements 27, (1997). 8390.Google Scholar
Markgraf, V. Late and postglacial vegetational and paleoclimatic changes in subantarctic, temperate and arid environments in Argentina. Palynology 7, (1983). 4370.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr., and Shackleton, N.J. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, (1987). 129.Google Scholar
McKee, E.D., Crosby, E.J., and Be, H.L. Flood Deposits, Bijou Creek, Colorado. Journal of Sedimentary Research 37, 3 (1967). 829851.Google Scholar
Miall, A.D. A review of the braided river depositional environment. Earth Science Review 13, (1977). 162.Google Scholar
Miall, A.D. The Geology of Fluvial Deposits. (1996). Springer Verlag, Berlín.Google Scholar
Murray, A.S., and Wintle, A.G. Luminescence dating of quartz using improved single-aliquot regenerative-dose protocol. Radiation Measurement 32, (2000). 5773.Google Scholar
Nanson, G.C., and Croke, J.C. A genetic classification of floodplains. Geomorphology 4, (1992). 459486.Google Scholar
Newell, A.J. Bounding surfaces in mixed aeolian-fluvial system (Rotliegend, Wessex Basin, SW UK). Marine and Petroleum Geology 18, (2001). 339347.Google Scholar
Perelló, M.J., Tripaldi, A., and Zárate, M. Sedimentología y geomorfología de los Médanos de la Travesía (sur de Mendoza, Argentina). IV Congreso Argentino de Cuaternario y Geomorfología, XII Congresso da Associação Brasileira de Estudos do Quaternário y II Reunión sobre el Cuaternario de América del Sur. Actas 274, (2009). La Plata. Asociación Argentina de Cuaternario y Geomorfología. Google Scholar
Polanski, J. Estratigrafía, neotectónica y geomorfología del Pleistoceno pedemontano, entre los ríos Diamante y Mendoza. Revista de la Asociación Geológica Argentina 37, 3–4 (1963). 127349.Google Scholar
Prescott, J.R., and Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, (1994). 497500.Google Scholar
Prieto, A.R., Blasi, A.M., De Francesco, C.G., and Fernández, C. Environmental history since 11,000 yr B.P. of the northeastern Pampas, Argentina from alluvial sequences of Luján River. Quaternary Research 62, (2004). 146161.Google Scholar
Prohaska, F. The climate of Argentina, Paraguay and Uruguay. Schwerdtfeger, W. Climates of Central and South America. World Survey of Climatology (1976). Elsevier, Amsterdam. 1373.Google Scholar
Pye, K., and Tsoar, H. Aeolian Sand and Sand Dunes. (1990). Unwin Hyman, London. 458 pp.Google Scholar
Ramos, V.A., and Kay, S.M. Overview of the tectonic evolution of the southern central Andes of Mendoza and Neuquén (35°–39° S latitude). Ramos, V.A., and Kay, S.M. Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). The Geological Society of America, Special Paper 407, (2006). 118.Google Scholar
Ramos, V., and Nullo, F. El volcanismo de arco cenozoico. Ramos, V.A. Geología y Recursos Naturales de Mendoza, XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos. (1993). Relatorio, Mendoza. 149160.Google Scholar
Rodríguez, E., and Barton, M. El Cuaternario de la llanura. Ramos, V. Geología y Recursos Naturales de Mendoza, XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos. (1993). Relatorio, Mendoza. 173194.Google Scholar
Rundel, P.W., Villagra, P.E., Dillon, M.O., Roig-Juñent, S., and Debandi, G. Arid and semi-arid ecosystems. Veblen, T.K., Young, K.R., and Orme, A. The Physical Geography of South America. (2007). Oxford University Press, Oxford. 158183.Google Scholar
Sepúlveda, E., Carpio, F., Regairaz, M., Zanettini, J., Zárate, M.A., (2007). Hoja Geológica 3569-II, San Rafael, provincia de Mendoza. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Boletín 321. Segunda edición revisada, 59 pp. Buenos Aires.Google Scholar
Stokes, S., Bray, H.E., and Blum, M.D. Optical resetting in large drainage basins: tests of zeroing assumptions using singlealiquot procedures. Quaternary Science Reviews 20, (2001). 879886.Google Scholar
Svendsen, J., Stollhofen, H., Krapf, C.B.E., and Stanistreet, I.G. Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sedimentary Geology 160, (2003). 731.Google Scholar
Teruggi, M.E. The nature and origin of Argentine loess. Journal of Sedimentary Petrology 27, (1957). 322332.Google Scholar
Toms, P.S., King, M., Zárate, M.A., Kemp, R.A., and Foit, F.F. Geochemical characterization, correlation and optical dating of tephra in alluvial sequences of central western Argentina. Quaternary Research 62, (2004). 6075.Google Scholar
Tonni, E.P., Nabel, P., Cione, A.L., Etchichury, M., Tófalo, R., Scillato Yané, G., San Cristóbal, J., Carlini, A., and Vargas, D. The Ensenada and Buenos Aires formations (Pleistocene) in a quarry near La Plata, Argentina. Journal of South American Earth Sciences 12, (1999). 273291.Google Scholar
Tripaldi, A. Campos de dunas de la planicie sanrafaelina: patrones de dunas e inferencias paleoclimáticas para el Pleistoceno tardío-Holoceno. Zárate, M.A., Gil, A., and Neme, G. Paleoambientes y ocupaciones humanas del centro-oeste de Argentina durante la transición Pleistoceno–Holoceno y Holoceno. (2010). Sociedad Argentina de Antropología, Buenos Aires. 6593.Google Scholar
Tripaldi, A., and Forman, S.L. Geomorphology and chronology of Late Quaternary dune fields of western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 251, (2007). 300320.Google Scholar
Tripaldi, A., and Limarino, C.O. Ambientes de interacción eólica-fluvial en valles intermontanos: ejemplos actuales y antiguos. Latin American Journal of Sedimentology and Basin Analysis 15, 1 (2008). 4366.Google Scholar
Tripaldi, A., Zárate, M.A., and Brook, G.A. Sucesiones eólicas y fluviales del Pleistoceno tardío–Holoceno de la planicie sanrafaelina. Zárate, M.A., Gil, A., and Neme, G. Paleoambientes y ocupaciones humanas del centro–oeste de Argentina durante la transición Pleistoceno–Holoceno y Holoceno. (2010). Sociedad Argentina de Antropología, Buenos Aires. 95121.Google Scholar
Wallinga, J. On the detection of OSL age overestimation using single-aliquot techniques. Geochronometria 21, (2001). 1726.Google Scholar
Williams, G.E. Flood deposits of the sand-bed ephemeral streams of central Australia. Sedimentology 17, (1971). 140.Google Scholar
Zárate, M. Loess of southern South America. Quaternary Science Reviews 22, (2003). 19872006.Google Scholar
Zárate, M., Kemp, R., and Toms, P. Late Quaternary landscape reconstruction and geochronology in the northern Pampas of Buenos Aires province, Argentina. Journal of South American Earth Sciences 27, (2009). 8899.CrossRefGoogle Scholar
Zhang, J.F., Zhou, L.P., and Yue, S.Y. Dating fluvial sediments by optically stimulated luminescence: selection of equivalent doses for age calculation. Quaternary Science Reviews 22, (2003). 11231129.Google Scholar