Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T06:53:32.643Z Has data issue: false hasContentIssue false

Integration of Tibetan Plateau ice-core temperature records and the influence of atmospheric circulation on isotopic signals in the past century

Published online by Cambridge University Press:  20 January 2017

Xiaoxin Yang
Affiliation:
Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, China
Tandong Yao*
Affiliation:
Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, China
Daniel Joswiak
Affiliation:
Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, China
Ping Yao
Affiliation:
Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, China
*
*Corresponding author at: No. 16 Lincui Road, Chaoyang District, Beijing 100101, China. E-mail address:tdyao@itpcas.ac.cn (T. Yao).

Abstract

Temperature signals in ice-core δ18O on the Tibetan Plateau (TP), particularly in the central and southern parts, continue to be debated because of the large scale of atmospheric circulation. This study presents ten ice-core δ18O records at an annual resolution, with four (Malan, Muztagata, Guliya, and Dunde) in the northern, three (Puruogangri, Geladaindong, Tanggula) in the central and three (Noijin Kangsang, Dasuopu, East Rongbuk) in the southern TP. Integration shows commonly increasing trends in δ18O in the past century, featuring the largest one in the northern, a moderate one in the central and the smallest one in the southern TP, which are all consistent with ground-based measurements of temperature. The influence of atmospheric circulation on isotopic signals in the past century was discussed through the analysis of El Niño/Southern Oscillation (ENSO), and of possible connections between sea surface temperature (SST) and the different increasing trends in both ice-core δ18O and temperature. Particularly, El Niño and the corresponding warm Bay of Bengal (BOB) SST enhance the TP ice-core isotopic enrichment, while La Niña, or corresponding cold BOB SST, causes depletion. This thus suggests a potential for reconstructing the ENSO history from the TP ice-core δ18O.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M.R., and Smith, L.A. Monte Carlo SSA: detecting irregular oscillations in the presence of coloured noise. Journal of Climate 9, (1996). 33733404.Google Scholar
Alsberg, B.K., Woodward, A.M., Winson, M.K., Rowland, J., and Kell, D.B. Wavelet denoising of infrared spectra. Analyst 122, (1997). 645652.CrossRefGoogle Scholar
Bradley, R.S., Vuille, M., Hardy, D., and Thompson, L.G. Low latitude ice cores record Pacific sea surface temperatures. Geophysical Research Letters 30, 3 (2003). 1774 http://dx.doi.org/10.1029/2002GL016546CrossRefGoogle Scholar
Breitenbach, S.F.M., Adkins, J.F., Meyer, H., Marwan, N., Kumar, K.K., and Haug, G.H. Strong influence of water vapor dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth and Planetary Science Letters 292, (2010). CrossRefGoogle Scholar
Cheng, H., Zhang, P.Z., Spoetl, C., Edwards, R.L., Cai, Y.J., Zhang, D.Z., Sang, W.C., Tan, M., and An, Z.S. The climatic cyclicity in semiarid–arid central Asia over the past 500,000 years. Geophysical Research Letters 39, (2012). L01705 http://dx.doi.org/10.1029/2011GL050202Google Scholar
Hou, S., Qin, D., Zhang, Q., Kang, S., Mayewski, P.A., and Wake, C.P. A 154a high-resolution ammonium record from the Rongbuk Glacier, north slope of Mt. Qomolangma (Everest), Tibet–Himalaya region. Atmospheric Environment 37, (2003). 721729.Google Scholar
Immerzeel, W.W., Beek, L.P.H., and Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 328, (2010). 13821385.Google Scholar
Joswiak, D.R., Yao, T., Wu, G., Xu, B., and Zheng, W. A 70-yr record of oxygen-18 variability in an ice core from the Tanggula Mountains, central Tibetan Plateau. Climate of the Past 6, (2010). 219227.CrossRefGoogle Scholar
Kalnay, E., Kanamitsu, M., Kistler, R. et al. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, (1996). 437471.2.0.CO;2>CrossRefGoogle Scholar
Kang, S., Qin, D., Mayewski, P.A., Wake, C.P., and Ren, J. Climatic and environmental records from the Far East Rongbuk ice core, Mt. Qomolangma (Mt. Everest). Episodes 24, 3 (2001). 176181.Google Scholar
Kang, S., Zhang, Y., Zhang, Y., Grigholm, B., Kaspari, S., Qin, D., Ren, J., and Mayewski, P. Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry. Atmospheric Environment 44, (2010). 29802989.Google Scholar
Kumar, K.K., Rajagopalan, B., and Cane, M.A. On the weakening relationship between the Indian Monsoon and ENSO. Science 284, 5423 (1999). 21562159.CrossRefGoogle ScholarPubMed
Lau, N.-C., and Wang, B. Interactions between the Asian monsoon and the El Niño/Southern Oscillation. Wang, B. The Asian Monsoon. (2006). Springer Berlin Heidelberg, 481 Google Scholar
Lawrimore, J.H., Menne, M.J., Gleason, B.E., Williams, C.N., Wuertz, D.B., Vose, R.S., and Rennie, J. An overview of the Global Climatology Network monthly mean temperature data set, version 3. Journal of Geophysical Research 116, (2011). D19121 http://dx.doi.org/10.1029/2011JD016187CrossRefGoogle Scholar
Liu, X., and Chen, B. Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20, (2000). 17291742.3.0.CO;2-Y>CrossRefGoogle Scholar
Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., Hammer, C., Johnsen, S., Lipenkov, V.Y., Mosley-Thompson, E., Petit, J.-R., Steig, E.J., Stievenard, M., and Vaikmae, R. Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research 54, (2000). 348358.CrossRefGoogle Scholar
Pen, U.-L. Application of wavelets to filtering of noisy data. Philosophical Transactions of the Royal Society of London 357A, (1999). 25612571.CrossRefGoogle Scholar
Piera, J., Roget, E., and Catalan, J. Turbulent patch identification in microstructure profiles: a method based on wavelet denoising and Thorpe displacement analysis. Journal of Atmospheric and Oceanic Technology 19, (2002). 13901402.2.0.CO;2>CrossRefGoogle Scholar
Qin, J., Yang, K., Liang, S., and Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change 97, (2009). 321327. http://dx.doi.org/10.1007/s10584-009-9733-9Google Scholar
Rajeevan, M., and Pai, D.S. On the El Niño–Indian monsoon predictive relationships. Geophysical Research Letters 34, 4 (2006). http://dx.doi.org/10.1029/2006GL028916Google Scholar
Shao, X.M., Huang, L., Liu, H.B., Liang, E., and Wang, L. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai. Science in China Series D: Earth Sciences 48, (2005). 939949.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.-N., Henderson, K., and Mashiotta, T.A. Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Climatic Change 59, (2003). 137155.CrossRefGoogle Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Bolzan, J.F., Dai, J., Yao, T., Gundestrup, N., Wu, X., Klein, L., and Xie, Z. Holocene–late Pleistocence climatic ice core records from Qinghai–Tibetan Plateau. Science 246, (1989). 474477.Google Scholar
Thompson, L.G., Yao, T., Mosley-Thompson, E., Davis, M.E., Henderson, K., and Lin, P.-N. A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science 289, (2000). 19161919.CrossRefGoogle ScholarPubMed
Thompson, L.G., Yao, T.D., Davis, M.E., Mosley-Thompson, E., Mashiotta, T.A., Lin, P.-N., Mikhalenko, V.N., and Zagorodnov, V.S. Holocene climate variability archived in the Puruogangri ice cap on the central Tibetan Plateau. Annals of Glaciology 43, (2006). 6169.Google Scholar
Tian, L., Masson-Delmotte, V., Stievenard, M., Yao, T., and Jouzel, J. Tibetan Plateau summer monsoon northward extend revealed by measurements of water stable isotopes. Journal of Geophysical Research 106, (2001). 2808128088.Google Scholar
Tian, L., Yao, T., Li, Z., MacClune, K., Wu, G., Xu, B., Li, Y., Lu, A., and Shen, Y. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs. Journal of Geophysical Research 111, (2006). D13103 http://dx.doi.org/10.1029/2005JD006249Google Scholar
Trenberth, K.E., and Chen, S.-C. Planetary waves kinematically forced by Himalayan orography. Journal of the Atmospheric Sciences 45, (1988). 29342948.Google Scholar
Trenberth, K.E., and Stepaniak, D.P. Indices of El Niño Evolution. Journal of Climate 14, (2001). 16971701.Google Scholar
Vuille, M., Werner, M., Bradley, R.S., Chan, R.Y., and Keimig, F. Stable isotopes in East African precipitation record Indian Ocean zonal mode. Geophysical Research Letters 32, (2005). L21705 http://dx.doi.org/10.1029/2005GL023876CrossRefGoogle Scholar
Wang, N., Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Yao, T., and Pu, J. Influence of variations in NAO and SO on air temperature over the northern Tibetan Plateau as recorded by δ18O in the Malan ice core. Geophysical Research Letters 30, 22 (2003). 2167 http://dx.doi.org/10.1029/2003GL018188Google Scholar
Wang, N., Yao, T., Pu, J., Zhang, Y., and Sun, W. Climatic and environmental changes over the last millennium in the Malan ice core from the northern Tibetan Plateau. Science in China Series D: Earth Science 49, 10 (2006). 10791089.Google Scholar
Yanai, M., and Wu, G.-X. Effects of the Tibetan Plateau. Wang, B. The Asian Monsoon. (2006). Springer Berlin Heidelberg, 513527.Google Scholar
Yang, M., Yao, T., He, Y., and Thompson, L.G. ENSO events recorded in the Guliya ice core. Climatic Change 47, (2000). 401409.Google Scholar
Yang, X.X., Yao, T.D., Yang, W.L. et al. Isotopic signal of earlier summer monsoon onset in the Bay of Bengal. Journal of Climate 25, (2012). 25092516.Google Scholar
Yao, T.D., Thompson, L.G., and Thompson, E. Climatological significance of δ18O in north Tibetan ice cores. Journal of Geophysical Research 101, (1996). 2953129537.Google Scholar
Yao, T.D., Li, Z., Thompson, L.G., Mosley-Thompson, E., Wang, Y., Tian, L., Wang, N., and Duan, K. δ18O records from Tibetan ice cores reveal differences in climatic changes. Annals of Glaciology 43, (2006). 17.CrossRefGoogle Scholar
Yao, T.D., Guo, X., Thompson, L., Duan, K., Wang, N., Pu, J., Xu, B., Yang, X., and Sun, W. δ18O record and temperature change over the past 100 years in ice cores on the Tibetan Plateau. Science in China Series D: Earth Sciences 49, (2006). 19.Google Scholar
Yao, T.D., Thompson, L.G., Mosbrugger, V. et al. Third Pole Environment (TPE). Environmental Development 3, (2012). 5264.Google Scholar
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D.B., and Joswiak, D. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2, (2012). 663667.Google Scholar
Yeh, T.C., and Gao, Y.X. Meteorology of the Qinghai–Xizang (Tibet) Plateau (in Chinese). (1979). Science Press, Beijing.Google Scholar
Yiou, P., Fuhrer, K., Meeker, L.D., Jouzel, J., Johnsen, S., and Mayewski, P.A. Paleoclimatic variability inferred from the spectral analysis of Greenland and Antarctic ice-core data. Journal of Geophysical Research 102, C12 (1997). 2644126454.Google Scholar
You, Q., Kang, S., Pepin, N., Fluegel, W.-A., Yan, Y., Behrawan, H., and Huang, J. Relationship between temperature trend magnitude, elevation, and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global and Planetary Change 71, (2010). 124133.Google Scholar
You, Q., Kang, S., Pepin, N., Fluegel, W.-A., Sanchez-Lorenzo, A., Yan, Y., and Zhang, Y. Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. Global and Planetary Change 72, (2010). 1124.CrossRefGoogle Scholar
Zhang, Q., Chen, Y.D., and Chen, J.Q. Flood/drought variability in the Yangtze Delta and association with the climatic changes from the Guliya ice core: a wavelet approach. Quaternary International 189, (2008). 163172.Google Scholar
Zhao, H., Xu, B., Yao, T., Wu, G., Lin, S., Gao, J., and Wang, M. Deuterium excess record in a southern Tibetan ice core and its potential climatic implications. Climate Dynamics 38, (2012). 17911803.Google Scholar
Zhu, H.F., Shao, X.M., Yin, Z.Y., Xu, P., Xu, Y., and Tian, H. August temperature variability in the southeastern Tibetan Plateau since AD1385 inferred from tree rings. Palaeogeography, Palaeoclimatology, Palaeoecology 305, (2011). 8492.CrossRefGoogle Scholar
Zhu, L., Wu, Y., Wang, J., Lin, X., Ju, J., Xie, M., Li, M., Maeusbacher, R., Schwalb, An, and Daut, G. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. Holocene 18, 5 (2008). 831839.Google Scholar