Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:18:03.710Z Has data issue: false hasContentIssue false

Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China

Published online by Cambridge University Press:  20 January 2017

Xingqi Liu*
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy Sciences (CAS), Nanjing 210008, China
Ulrike Herzschuh
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, 14473 Potsdam, Germany
Ji Shen
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy Sciences (CAS), Nanjing 210008, China
Qingfen Jiang
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy Sciences (CAS), Nanjing 210008, China Graduate School, CAS, Beijing 100039, China
Xiayun Xiao
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy Sciences (CAS), Nanjing 210008, China
*
*Corresponding author. Fax: +86 25 57713063. E-mail addresses:xingqiliu@yahoo.com, xqliu@niglas.ac.cn (X. Liu).

Abstract

Sedimentological, geochemical and palynological data from Wulungu Lake in northern Xinjiang, China, are used to reconstruct environmental and climate changes since 9550 cal yr BP. High abundance of Sparganium and Poaceae, low Md (median diameter) and δ13Corganic values indicate aridity between 9550 and 6730 cal yr BP. High Md and δ13Corganic values, and the prevalence of desert-steppe and steppe vegetation between 4200 and 560 cal yr BP, indicate that effective moisture increased after 6730 cal yr BP, peaking at 4200 and 560 cal yr BP. Low Md values, a negative excursion of δ13Corg, and the transition from steppe to desert vegetation since 560 cal yr BP reflect a decrease in effective moisture during the latest Holocene. Late Holocene human activities were indicated by sharp increase in the abundance of Pediastrum then. Variations in carbonate contents indicate that temperature was generally high between 9550 and 7740 cal yr BP, low between 7740 and 6730 cal yr BP, intermediate between 6730 and 560 cal yr BP, and low during the last 560 yr. Regional comparison indicates that the Asian monsoon did not extend to Wulungu Lake and westerlies were the main factor in determining the moisture availability during the Holocene.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z.S., Porter, S.C., (1997). Millennial-scale climatic oscillations during the last interglaciation in central China. Geology 25, 603606.Google Scholar
Anivaer, A., (2004). Distribution, migration, fusion of major ethnic groups of Xinjiang in Yuan, Ming and Qing Dynasties and formation of the ethnic nationalities of the Modern Xinjiang. Journal of Xinjiang Normal University (Social Sciences) 25, 7275. (in Chinese with English abstract).Google Scholar
Appleby, P.G., Oldfield, F., (1978). The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5, 18.Google Scholar
Appleby, P.G., Oldfield, F., (1983). The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiology 103, 2935.Google Scholar
Aravena, R., Warner, B.G., MacDonald, G.M., Hanf, K.I., (1992). Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating. Quaternary Research 37, 333345.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., van der Knaap, W.O., Ammann, B., (2004). Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 209, 259279.CrossRefGoogle Scholar
Boomer, I., Aladin, N., Plotnikov, I., Whatley, R., (2000). The palaeolimnology of the Aral Sea: a review. Quaternary Science Reviews 19, 12591278.CrossRefGoogle Scholar
Bottema, S., (1974). Late Quaternary vegetation history of northwestern Greece.. Thesis, University of Groningen, .Google Scholar
Burden, E.T., McAndrews, J.H., Norris, G., (1986). Palynology of Indian and European forest clearance and farming in lake sediment cores from Awenda Provincial Park, Ontario. Canadian Journal of Earth Sciences 23, 4354.Google Scholar
Chen, X.Y., Yan, S., (1989). A vegetation survey of valley forest in the pediment plain of Altai district of Xinjiang. Acta phytoecologica et Geobotanica Sinica 1, 6672. (in Chinese with English abstract).Google Scholar
Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P., Pachur, H.-J., (1999). Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophysical Research Letters 26, 20372040.CrossRefGoogle Scholar
COHMAP Members(1988). Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 10431052.CrossRefGoogle Scholar
Cour, P., Zheng, Z., Duzer, D., Calleja, M., Yao, Z., (1999). Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Review of Palaeobotany and Palynology 104, 183204.CrossRefGoogle Scholar
Davis, O.K., (1999). Pollen analysis of Tulare Lake, California: Great Basin-like vegetation in Central California during the full-glacial and early Holocene. Review of Palaeobotany and Palynology 107, 249257.Google Scholar
El-Moslinmany, A., (1990). The Ecological significance of common nonarborcal pollen: example from dryland of the Middle East. Review of Palaeobotany and Palynology 64, 343350.Google Scholar
Fægri, K., Iversen, J., (1989). Textbook of Pollen Analysis. fourth ed. Wiley, Chichester. (revised by Fægri, K., Kaland, P.E., Krzywinski, K.).Google Scholar
Feng, Z.D., Wang, W.G., Guo, L.L., Khosbayar, P., Narantsetseg, T., Julld, A.J.T., (2005). Lacustrine and eolian records of Holocene climate changes in the Mongolian Plateau: preliminary results. Quaternary International 136, 2532.CrossRefGoogle Scholar
Fowell, S.J., Hansen, B.C.S., Peck, J.A., Khosbayar, P., Ganbold, E., (2003). Mid to late Holocene climate evolution of the lake Telmen Basin, North Central Mongolia, based on Palynological data. Quaternary Research 59, 353363.CrossRefGoogle Scholar
Gao, Y., (1962). Some Problems on East-Asia Monsoon. Science Press, Beijing. (in Chinese).Google Scholar
Gasse, F., Arnold, M., Fontes, J.C., Fort, M., Gibert, E., Huc, A., Bingyan, L., Yuanfang, L., Qing, L., Melieres, F., van Campo, E., Fubao, W., Qingsong, Z., (1991). A 13.000-Year climate record from western Tibet. Nature 353, 742745.CrossRefGoogle Scholar
Gasse, F., Fontes, J.C., van Campo, E., Wei, K., (1996). Holocene nvironmental changes in Bangong Co basin (Western Tibet): 4. Discussions and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 7992.Google Scholar
Grunert, J., Lehmkuhlb, K., Walther, M., (2000). Paleoclimatic evolution of the Uvs Nuur basin and adjacent areas (Western Mongolia). Quaternary International 65/66, 171192.Google Scholar
Häkanson, L., Jansson, M., (1983). Principles of Lake Sedimentology. Springer, Berlin.316.Google Scholar
Harrison, S.P., Digerfeldt, G., (1993). European lakes as paleohydrological and paleoclimatic indicators. Quaternary Science Reviews 12, 233248.Google Scholar
Harrison, S.P., Yu, G., Tarasov, P.E., (1996). Late Quaternary lake-level record from northern Eurasia. Quaternary Research 45, 138159.CrossRefGoogle Scholar
Hassan, K.M., Swinehart, J.B., Spalding, R.F., (1997). Evidence for Holocene environmental change from C/N ratios and δ13C and δ15N values in Swan Lake sediments, western Sand Hill, Nebraska. Journal of Paleolimnology 18, 121130.Google Scholar
Herczeg, A.L., (1988). Early diagenesis of organic matter in lake sediments: a stable carbon isotope study of pore water. Chemical Geology 72, 199209.Google Scholar
Herczeg, A.L., Fairbanks, R.G., (1987). Anomalous carbon isotope fractionation between atmospheric CO2 and dissolved inorganic carbon induced by intense photosynthesis. Geochimica et Cosmochimica Acta 51, 895899.CrossRefGoogle Scholar
Herzschuh, U., (2006). Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews 25, 163178.CrossRefGoogle Scholar
Herzschuh, U., Tarasov, P., Wünnemann, B., Hartmann, K., (2004). Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 211, 117.Google Scholar
Herzschuh, U., Winter, K., Wünnemann, B., Li, S.J., (2006). A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quaternary International 154–155, 113121.Google Scholar
Herzschuh, U., Zhang, C., Mischke, S., Herzschuh, R., Mohammadi, F., Mingram, B., Kürschner, H., Riedel, F., (2005). A late Quaternary lake record from the Qilian Mountains (NW China).Part 2: History of the primary production reconstructed from macrofossil, pollen, biomarker and isotope data. Global and Planetary Change 46, 361379.CrossRefGoogle Scholar
Hodell, D.A., Schelske, C.L., (1998). Production, sedimentation, and isotopic composition of organic matter in lake ontario. Limnology and Oceanography 43, 200214.Google Scholar
Hodell, D.A., Schelske, C.L., Fahnenstiel, G.L., Robbins, L.L., (1998). Biologically induced calcite and its isotopic composition in Lake Ontario. Limnology and Oceanography 43, 187199.Google Scholar
Hollander, D.J., McKenzie, J.A., (1991). CO2 control on carbon-isotope fractionation during aqueous photosynthesis: a paleo-pco barometer. Geology 19, 929932.2.3.CO;2>CrossRefGoogle Scholar
Jankovská, V., Komárek, J., (2000). Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobotanica 35, 5982.Google Scholar
Jiang, Q.F., Shen, J., Liu, X.Q., Zhang, E.L., (2007). Holocene climate reconstruction of Wulungu Lake (Xinjiang,China) inferred from ostracod species assemblages and stable isotopes. Quaternary Sciences 27, 382391. (in Chinese with English abstract).Google Scholar
Kashiwaya, K., Masuzawa, T., Morinaga, H., Yaskawa, K., Yuan, B., Liu, J., Gu, Z., (1995). Changes in hydrological conditions in the central Qing-Zang (Tibetan) Plateau inferred from lake bottom sediments. Earth and Planetary Science Letters 135, 3139.CrossRefGoogle Scholar
Kelts, K., Hsu, K.J., (1978). Freshwater carbonate sedimentation. Lerman, A. Lakes: Chemistry, Geology, Physics Springer, New York.295323.Google Scholar
Krishnamurthy, R.V., Bhattacharya, S.K., Kusumgar, S., (1986). Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments, India. Nature 323, 150152.Google Scholar
Leng, M.J., Marshall, J.D., (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23, 811831.Google Scholar
Lin, R.F., Wei, K.Q., (1998). Palaeoclimate implications of oxygen isotope record from lacustrine sediments of Manas lake,Xinjiang: a comparison with those from Qinghai Lake and Siling Lake. Quaternary Sciences 4, 309318. (in Chinese with English abstract).Google Scholar
Lin, R.F., Wei, K.Q., Cheng, Z.Y., Wang, Z.X., (1996). Sedimentological evidence of the paleocliamtic changes in Manas Lake of Xinjiang. Journal of Geochemistry 25, 6371. (in Chinese with English abstract).Google Scholar
Lister, G.S., Kelts, K., Chen, K.Z., Yu, J.Q., Niessen, F., (1991). Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the last Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 84, 141162.Google Scholar
Liu, X.Q., Shen, J., Wang, S.M., Yang, X.D., Tong, G.B., Zhang, E.L., (2002). A 16000-year pollen record of Qinghai Lake and its Paleoclimate and Paleoenvironment. Chinese Science Bulletin 47, 19311937.CrossRefGoogle Scholar
Liu, X.Q., Dong, H.L., Rech, J.A., Matsumoto, R., Yang, B., Wang, Y.B., (2008). Evolution of Chaka Salt Lake in NW China in response to climatic change during the latest Pleistocene-Holocene.. Quaternary Science Reviews. doi:10.1016/j.quascirev.2007.12.006.Google Scholar
Lücke, A., Schleser, G.H., Zolitschka, B., Negendank, J.F.W., (2003). A Lateglacial and Holocene organic carbon isotope record of lacustrine palaeoproductivity and climatic change derived from varved lake sediments of Lake Holzmaar, Germany. Quaternary Science Reviews 225, 69580.Google Scholar
Ma, D.Z., (2002). Outline of Xinjiang history. China's Borderland History and Geography Studies 12, 1021. (in Chinese with English abstract).Google Scholar
Magny, M., Guiot, J., Schoellammer, P., (2001). Quantitative reconstruction of Younger Dryas to Mid-Holocene paleoclimates at Le Locle, Swiss Jura, using pollen and lake-level data. Quaternary Research 56, 170180.Google Scholar
Magny, M., Bégeot, C., Guiot, J., Peyron, O., (2003). Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22, 15891596.Google Scholar
Magnya, M., de Beaulieub, J.L., Drescher-Schneiderc, R., Vannièrea, B., Walter-Simonnetd, A.V., Mirasb, Y., Milleta, M., Bossueta, G., Peyrona, O., Brugiapagliae, E., Lerouxa, A., (2007). Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quaternary Science Reviews 26, 17361758.Google Scholar
Meyers, P.A., (2001). Sediment organic matter. Last, W.M., Smol, J.P. Tracking Environmental change using lake sediments: Physical and Geochemical Methods Volume 2, Kluwer academic publishers, London.239269.Google Scholar
Meyers, P.A., Ishiwatari, R., (1995). Organic matter accumulation records in lake sediments. Lerman, A., Imboden, D., Gat, J. Physics and Chemistry of Lakes Springer, Berlin.279328.Google Scholar
Mischke, S., Fuchs, D., Riedel, F., Schudack, M.E., (2002). Mid to Late Holocene palaeoenvironment of Lake Eastern Juyanze (northwestern China) based on ostracods and stable isotopes. Geobios 35, 99110.Google Scholar
Molloy, K., O’Connell, M., (2004). Holocene vegetation and land-use dynamics in the karstic environment of Inis Oirr, Aran Islands, western Ireland: pollen analytical evidence evaluated in light of the archaeological record. Quaternary International 113, 4164.Google Scholar
Morrill, C., Overpeck, J.T., Cole, J.E., Liu, K-B., Shen, C., Tang, L., (2006). Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quaternary Research 65, 232243.Google Scholar
Neumann, T., Stögbauer, S., Walpersdorf, E., Stüben, D., Kunzendorf, H., (2002). Stable isotopes in recent sediments of Lake Arendsee, NE Germany: response to eutrophication and remediation measures. Palaeogeography, Palaeoclimatology, Palaeoecology 178, 7590.Google Scholar
Oldfield, F., Appleby, P.G., (1984). Empirical testing of 210Pb-dating models for lake sediments. Haworth, E.Y., Lund, J.W.G. Lake Sediments and Environmental History Leicester University Press, Leicester.93124.Google Scholar
Overpeck, J., Anderson, D., Trumbore, S., Prell, W., (1996). The southwest Indian Monsoon over the last 18,000 years. Climate Dynamics 12, 213225.Google Scholar
Paduano, G., Bush, M.B., Baker, P.A., Fritz, S.C., Seltzer, G.O., (2003). A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 259279.CrossRefGoogle Scholar
Patterson, R.T., Dalby, A., Kumar, A., Henderson, L.A., Boudreau, R.E.A., (2002). Arcellaceans (thecamoebians) as indicators of land-use change: settlement history of the Swan Lake area, Ontario as a case study. Journal of Paleolimnology 28, 297316.CrossRefGoogle Scholar
Peck, J.A., Khosbayar, B., Fowell, S.J., Pearce, R.B., Ariunbileg, S., Hansen, B.C.S., Soninkhishig, N., (2002). Mid to Late Holocene climate change in north central Mongolia as recorded in the sediments of Lake Telmen. Palaeogeography, Palaeoclimatology, Palaeoecology 183, 135153.CrossRefGoogle Scholar
Pollingher, U., (1986). Non-siliceous algae in a five meter core from Lake Kinneret (Israel). Hydrobiologia 143, 213216.CrossRefGoogle Scholar
Porter, S.C., An, Z.S., (1995). Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.Google Scholar
Porter, S.C., Zhou, W.J., (2006). Synchronism of Holocene East Asian Monsoon variations and North Atlantic drift-ice tracers. Quaternary Research 65, 443449.Google Scholar
Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R., (1996). Reconstructing biomes from palaecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12, 185194.Google Scholar
Qin, B., Yu, G., (1998). Implications of lake level variations at 6 and 18 ka in mainland Asia. Global and Planetary Change 18, 5972.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 0–26 Cal Kyr BP. Radiocarbon 46, 10291058.Google Scholar
Rhodes, T.E., Gasse, F., Lin, R., Fontes, J.C., Wei, K., Bertrand, P., Gibert, E., Mélières, F., Tucholka, P., Wang, Z., Cheng, Z., (1996). A Late Pleistocene–Holocene lacustrine record from Lake Manas,Zunggar (northern Xinjiang, western China). Palaeogeography, Palaeoclimatology, Palaeoecology 120, 105121.Google Scholar
Ricketts, R.D., Johnson, T.C., Brown, E.T., Rasmussen, K.A., Romanovsky, V.V., (2001). The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan:trace element and stable isotope composition of ostracodes. Palaeogeography, Palaeoclimatology, Palaeoecology 176, 207227.CrossRefGoogle Scholar
Robbins, J.A., (1978). Geochemical and geophysical applications of radioactive lead. Nriagu, J.O. The Biogeochemistry of Lead in the Environment Elsevier/North-Holland Biomedical Press, New York.285393.Google Scholar
Sarmaja-Korjonen, K., Seppänen, A., Bennike, O., (2006). Pediastrum algae from the classic late glacial Bølling Sø site, Denmark: Response of aquatic biota to climate change. Review of Palaeobotany and Palynology 138, 95107.Google Scholar
Schelske, C.L., Hodell, D.A., (1991). Recent changes in productivity and climate of Lake Ontario detected by isotopic analyses of sediments. Limnology and Oceanography 36, 961965.Google Scholar
Shen, J., Liu, X.Q., Wang, S.M., Matsumoto, R., (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International 136, 131140.Google Scholar
Sirocko, F., Sarntheim, M., Erlenkeuser, H., Lange, H., Arnold, M., Duplessy, J.C., (1993). Century-scale events in monsoonal climate over the past 24,000 years. Nature 364, 322324.Google Scholar
Stuiver, M., (1975). Climate versus changes in 13C content of the organic component of lake sediments during the late Quaternary. Quaternary Research 5, 251262.Google Scholar
Sun, X.J., Du, N.Q., Weng, C.Y., Lin, R.F., Wei, K.Q., (1994). Plaeovegetation and paleoenvironment of Manasi Lake,Xinjiang, Northwestern China during the last 14000 years. Quaternary Sciences 3, 239248. (in Chinese with English abstract).Google Scholar
Tarasov, P.E., (1996). Lake Status Records from the Former Soviet Union and Mongolia: Documentation of the Second Version of the Database. World Data Center—A for Paleoclimatology, Boulder, Colorado.Google Scholar
Tarasov, P.E., Harrison, S.P., (1998). Lake status records from the former Soviet Union and Mongolia: a continental-scale synthesis. Palaeoclimate Research 25, 115130.Google Scholar
Tarasov, P.E., Webb, T. III, Andreev, A.A., Afanaseva, N.B., Berezina, N.A., Bezusko, L.G., Blyakharchuk, T.A., Bolikhovskaya, N.S., Cheddadi, R., Chernavskaya, M.M., Chernova, G.M., Dorofeyuk, N.I., Dirksen, V.G., Elina, G.A., Filimonova, L.V., Glebov, F.Z., Guiot, J., Gunova, G.S., Harrison, S.P., Jolly, D., Khomutova, V.I., Kvavadze, E.V., Osipova, I.M., Panova, N.K., Prentice, I.C., Saarse, L., Sevastyanov, D.V., Volkova, V.P., Zernitskaja, V.P., (1998). Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from former Soviet Union and Mongolia. Journal of Biogeography 25, 10291053.Google Scholar
Tarasov, P.E., Dorofeyuk, N., Metel’tseva, E., (2000). Holocene vegetation and climate changes in Hoton-Nur basin, northwest Mongolia. Boreas 29, 117126.Google Scholar
ter Braak, C.J.F., (1987). The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetation 69, 6977.Google Scholar
The compilation committee of Fuhai county annals(2003). Fuhai county annals. Xinjiang People's Press, Urumchi.914 (in Chinese).Google Scholar
Thompson, J.B., Ferris, F.G., (1990). Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18, 995998.Google Scholar
Tucker, M.E., Wright, V.P., (1990). Carbonate Sedimentology. Blackwell, Oxford.164190.Google Scholar
Villa-Martínez, R., Villagrán, C., Jenny, B., (2003). The last 7500 cal yr B.P. of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S). Quaternary Research 60, 284293.Google Scholar
Wang, S.M., and Dou, H.S. (1998). Lakes in China. Science Press, Beijing. (in Chinese).Google Scholar
Wei, K., Gasse, F., (1999). Oxygen isotopes in lacustrine carbonates of West China revisited: implications for post glacial changes in summer monsoon circulation. Quaternary Science Reviews 18, 13151334.Google Scholar
Wu, C. (2001). Vegetation Atlas of China. Science Press, Beijing. (in Chinese).Google Scholar
Wünnemann, B., Mischke, S., Chen, F.H., (2006). A Holocene sedimentary record from Bosten Lake, China. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 223238.Google Scholar
Yasuda, Y., Kitagawa, H., Nakagawa, T., (2000). The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: a palynological study. Quaternary International 73/74, 127136.Google Scholar
Ye, W., (2000). The climatic characteristics and environmental patterns during Holocene in North Xinjiang. Journal of Desert Research 2, 185191. (in Chinese with English abstract).Google Scholar
Yu, G., Prentice, I.C., Harrison, S.P., Sun, X., (1998). Pollen-based biome reconstruction for China at 0 and 6000 years. Journal of Biogeography 25, 10551069.Google Scholar
Zhong, W., Wang, J.M., (1994). Preliminary discussion on the Holocene environmental changes in Xinjiang-Geologic records and sequences. Journal of Arid Land resources and Environment 4, 916. (in Chinese with English abstract).Google Scholar
Zhou, X., (1999). The historical and present situation of stationing troops to cultivate and guard the frontier in Beitun region. Journal of Xinjiang Normal University (Social Sciences) 27, 7074. (in Chinese with English abstract).Google Scholar
Zhou, W.J., Head, M.J., Lu, X.F., An, Z.S., Jull, A.J.T., Donahue, D., (1999). Teleconnection of climatic events between East Asia and polar, high latitude areas during the last deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 163172.Google Scholar