Skip to main content Accessibility help

High-Resolution Marine Record of Climatic Change in Mid-latitude Chile during the Last 28,000 Years Based on Terrigenous Sediment Parameters

  • Frank Lamy (a1), Dierk Hebbeln (a1) and Gerold Wefer (a1)


Marine sediment cores from the continental slope off mid-latitude Chile (33°S) were studied with regard to grain-size distributions and clay mineral composition. The data provide a 28,000-yr14C accelerator mass spectrometry-dated record of variations in the terrigenous sediment supply reflecting modifications of weathering conditions and sediment source areas in the continental hinterland. These variations can be interpreted in terms of the paleoclimatic evolution of mid-latitude Chile and are compared to existing terrestrial records. Glacial climates (28,000–18,000 cal yr B.P.) were generally cold–humid with a cold–semiarid interval between 26,000 and 22,000 cal yr B.P. The deglaciation was characterized by a trend toward more arid conditions. During the middle Holocene (8000–4000 cal yr B.P.), comparatively stable climatic conditions prevailed with increased aridity in the Coastal Range. The late Holocene (4000–0 cal yr B.P.) was marked by more variable paleoclimates with generally more humid conditions. Variations of rainfall in mid-latitude Chile are most likely controlled by shifts of the latitudinal position of the Southern Westerlies. Compared to the Holocene, the southern westerly wind belt was located significantly farther north during the last glacial maximum. Less important variations of the latitudinal position of the Southern Westerlies also occurred on shorter time scales.



Hide All
Bard, E. (1988). Correction of accelerator mass spectrometry14 . Paleoceanography 3, 635645.
Bard, E., Arnold, M., Fairbanks, R.G., and Hamelin, B. (1993). 230 234 14 . Radiocarbon 35, 191199.
Biscaye, P.E. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin 76, 803832.
Caviedes, C. (1990). Rainfall variation, snowline depression, and vegetational shifts in Chile during the Pleistocene. Climatic Change 19, 94114.
Chamley, H. (1989). Clay Sedimentology. Springer, Berlin.
Clapperton, C.M. (1993). Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.
Clapperton, C.M., Sugden, D.E., Kaufman, D.S., and McCulloch, R.D. (1995). The last glaciation in Central Magellan Strait, southernmost Chile. Quaternary Research 44, 133148.
Esquevin, J. (1969). Influence de la composition chimique des illites sur le cristallinité. Bulletin du Centre de Recherches de Pau-S.N.P.A. 3, 147154.
Gingele, F.X. (1996). Holocene climatic optimum in Southwest Africa—Evidence from the marine clay mineral record. Palaeogeography, Palaeoclimatology, Palaeoecology 122, 7787.
Grosjean, M., Geyh, M.A., Messerli, B., Schreier, H., and Veit, H. (1998). A late-Holocene (<2600 BP) glacial advance in the south central Andes (29°S), northern Chile. The Holocene 8, 473479.
Hebbeln, D., Wefer, cruise participants, 1995, Cruise Report of R/V SONNE Cruise 102, Valparaiso–Valparaiso, 9.5–28.6.95. Universität Bremen, Bremen,
Heusser, C.J. (1989). Southern westerlies during the Last Glacial Maximum. Quaternary Research 31, 423425.
Heusser, C.J. (1990). Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 107127.
Heusser, C.J., Denton, G.H., Hauser, A., Andersen, B.G., and Lowell, T.V. (1995). Quaternary pollen records from the Archipiélago de Chiloé in the context of glaciation and climate. Revista Geológica de Chile 22, 2546.
Heusser, C.J., Lowell, T.V., Heusser, L.E., Hauser, A., Andersen, B.C., and Denton, G.H. (1996). Full-glacial–late-glacial palaeoclimate of the Southern Andes: Evidence from pollen, bettle and glacial records. Journal of Quaternary Science 11, 173184.
Hulton, N., Sugden, D., Payne, A., and Clapperton, C. (1994). Glacier modeling and the climate of Patagonia during the Last Glacial Maximum. Quaternary Research 42, 119.
Lamy, F., Hebbeln, D., Wefer, G. Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5°S) and paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 141, (1998). 233251.
Lamy, F., Hebbeln, D., and Wefer, G. (1998). Terrigenous sediment supply along the Chilean continental slope: Modern latitudinal trends of texture and composition. Geologische Rundschau 87,
Leroux, M. (1993). The Mobile Polar High: a new concept explaining present mechanisms of meridional air-mass and energy exchanges and global propagation of paleoclimatic changes. Global and Planetary Change 7, 6993.
Lowell, T.V., Heusser, C.J., Andersen, B.G., Moreno, P.I., Hauser, A., Heusser, L.E., Schlüchter, C., Marchant, D.R., and Denton, G.H. (1995). Interhemispheric correlation of Late Pleistocene glacial events. Science 269, 15411549.
Marchant, M. (1997). Rezente und spätquartäre Sedimentation planktischer Foraminiferen im Peru-Chile Strom. Universität Bremen, Bremen.
Markgraf, V. (1989). Reply to C. J. Heusser's “Southern Westerlies” during the Last Glacial Maximum. Quaternary Research 31, 426432.
McGlone, M.S., Kershaw, A.P., Markgraf, V. El Niño/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records.(1992). El Niño: Historical and Paleoclimatic aspects of the Southern Oscillationp. 435–462
Miller, A. (1976). The climate of Chile.Schwerdtfeger, W. World Survey of Climatology, Vol. 12 Elsevier, Amsterdam.113145.
Milliman, J.D., Rutkowski, C., and Meybeck, M. (1995). River Discharge to the Sea: A Global River Index (GLORI). NIOZ, Texel.
Nadeau, M.J., Schleicher, M., Grootes, P.M., Erlenkeuser, H., Gottolong, A., Mous, D.J.W., Sarnthein, J.M., and Willkomm, N. (1997). The Leibniz-Labor AMS facility at the Christian-Albrechts University, Kiel, Germany. Nuclear Instruments and Methods in Physics Research 123, 2230.
Petschick, R., Kuhn, G., and Gingele, F. (1996). Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport and relation to oceanography. Marine Geology 130, 203229.
Ruttland, J., and Fuenzalida, H. (1991). Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. International Journal of Climatology 11, 6376.
Shaffer, G., Salinas, S., Pizarro, O., Vega, A., and Hormazabal, S. (1995). Currents in the deep ocean off Chile (30°S). Deep-Sea Research 42, 425436.
Singer, A. (1984). The paleoclimatic interpretation of clay minerals in sediments—A review. Earth-Science Reviews 21, 251293.
Stein, R. (1985). Rapid grain-size analyses of clay and silt fraction by Sedigraph 5000D: Comparison with Coulter Counter and Atterberg methods. Journal of Sedimentary Petrology 55, 590615.
Stoffers, P., Hekinian, R., (1992). Cruise Report Sonne 80a—Midplate III Oceanic Volcanism in the Southeast Pacific. Universität Kiel, Kiel.
Strub, P.T., Mesias, J.M., Montecino, V., Ruttlant, J., Salinas, S. Coastal ocean circulation off Western South America.Robinson, A.R., and Brink, K.H. (1998). The Global Coastal Ocean. Regional Studies and Syntheses. Wiley, New York.273314.
Thornburg, T., and Kulm, L.D. (1987). Sedimentation in the Chile Trench: Petrofacies and provenance. Journal of Sedimentary Petrology 57, 5574.
Veit, H. (1996). Southern Westerlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico, Northern Chile (27–33°S). Palaeogeography Palaeoclimatology Palaeoecology 123, 107119.
Villagrán, C. (1993). Una interpretatión climática del registro palinológico del último ciclo glacial–postglacial en Sudamérica. Bullitin de l'Institut François des études andines 22, 243258.
Villagrán, C., and Varela, J. (1990). Palynological evidence for increased aridity on the Central Chilean coast during the Holocene. Quaternary Research 34, 198207.
Von Huene, R., Corvalan, J., and Korstgard, J. (1995). Fahrtbericht zur Forschungsreise SO 101—Condor. GEOMAR, Kiel.
Zeil, W. (1986). Südamerika. Enke Verlag, Stuttgart.

High-Resolution Marine Record of Climatic Change in Mid-latitude Chile during the Last 28,000 Years Based on Terrigenous Sediment Parameters

  • Frank Lamy (a1), Dierk Hebbeln (a1) and Gerold Wefer (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed