Skip to main content Accessibility help

Glacial–interglacial change in chlorite concentration from the Lingtai section in the Chinese Loess Plateau over the past 1.2 Ma and its possible forcing mechanisms

  • Tong He (a1), Lianwen Liu (a1), Yang Chen (a1), Xuefen Sheng (a1), Junfeng Ji (a1) and Jun Chen (a1)...


High-precision concentrations of chlorite minerals from the Lingtai section in the Chinese Loess Plateau and the surrounding deserts are presented through a mineral liberation analyzer technique. Variations in chlorite concentration over the last 0.5 Ma display a typical pattern of glacial–interglacial changes, with its bulk content in loess units approximately twice that in paleosol units. This climate-driven chlorite change is more pronounced in the fine-size fraction (5–20 μm) of the loess deposits. Evidence from changes in hornblende and muscovite along the same profile suggests that the glacial–interglacial oscillations were likely controlled by changes in atmospheric circulation and shifts in the dust provenance instead of postdepositional weathering. A relatively high chlorite content in several deserts near Mt. Qilian compared with the other desert basins suggests that a transport pathway in the west–east direction, associated with southward shifts of the winter monsoons, may play an important role in modulating the chlorite records. In addition, enhanced saltation and transportation of dust materials is thought to be a main driver of the pronounced changes in the fine-size fraction. Finally, we discuss a possible forcing mechanism behind different long-term trends between the chlorite and its secondary weathering products we observed here.


Corresponding author

*Corresponding authors at: Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210026, China. E-mail addresses:;


Hide All
An, Z., Colman, S.M., Zhou, W., Li, X., Brown, E.T., Jull, A.J.T., Cai, Y., et al., 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Scientific Reports 2, 619.
Balsam, W., Ji, J.F., Chen, J., 2004. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and Planetary Science Letters 223, 335348.
Biscaye, P.E., Grousset, F.E., Revel, M., VanderGaast, S., Zielinski, G.A., Vaars, A., Kukla, G., 1997. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. Journal of Geophysical Research: Oceans 102, 2676526781.
Blank, M., Leinen, M., Prospero, J.M., 1985. Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific. Nature 314, 8486.
Bory, A.J.M., Biscaye, P.E., Svensson, A., Grousset, F.E., 2002. Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland. Earth and Planetary Science Letters 196, 123134.
Buchan, C., Pfänder, J., Kröner, A., Brewer, T.S., Tomurtogoo, O., Tomurhuu, D., Cunningham, D., Windley, B.F., 2002. Timing of accretion and collisional deformation in the Central Asian Orogenic Belt: implications of granite geochronology in the Bayankhongor Ophiolite Zone. Chemical Geology 192, 2345.
Carnicelli, S., Mirabella, A., Cecchini, G., Sanesi, G., 1997. Weathering of chlorite to a low-charge expandable mineral in a Spodosol on the Apennine Mountains, Italy. Clays and Clay Minerals 45, 2841.
Chen, J., Chen, Y., Liu, L., Ji, J., Balsam, W., Sun, Y., Lu, H., 2006. Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength. Geochimica et Cosmochimica Acta 70, 14711482.
Chen, J., Li, G., Yang, J., Rao, W., Lu, H., Balsam, W., Sun, Y., Ji, J., 2007. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta 71, 39043914.
Deer, D.A., Howie, R.A., Zussman, J., 1963. Rock-Forming Minerals. Longman, London.
Ding, Z., Liu, T., Rutter, N.W., Yu, Z., Guo, Z., Zhu, R., 1995. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. Quaternary Research 44, 149159.
Ding, Z.L., Derbyshire, E., Yang, S.L., Sun, J.M., Liu, T.S., 2005. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters 237, 4555.
Ding, Z.L., Xiong, S.F., Sun, J.M., Yang, S.L., Gu, Z.Y., Liu, T.S., 1999. Pedostratigraphy and paleomagnetism of a ∼7.0 Ma eolian loess–red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 4966.
Eden, D.N., Qizhong, W., Hunt, J.L., Whitton, J.S., 1994. Mineralogical and geochemical trends across the Loess Plateau, North China. Catena 21, 7390.
Farrell, J.W., Prell, W.L., 1989. Climatic change and CaCO3 preservation: an 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4, 447466.
Ferrat, M., Weiss, D.J., Strekopytov, S., Dong, S., Chen, H., Najorka, J., Sun, Y., Gupta, S., Tada, R., Sinha, R., 2011. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau. Geochimica et Cosmochimica Acta 75, 63746399.
Gong, D.-Y., Wang, S.-W., Zhu, J.-H., 2001. East Asian winter monsoon and Arctic oscillation. Geophysical Research Letters 28, 20732076.
Hao, Q., Wang, L., Oldfield, F., Peng, S., Qin, L., Song, Y., Xu, B., Qiao, Y., Bloemendal, J., Guo, Z., 2012. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature 490, 393396.
He, T., Liu, L., Chen, Y., Sheng, X., Ji, J., 2016. Plagioclase sub-species in Chinese loess deposits: implications for dust source migration and past climate change. Quaternary Research 85, 1724.
He, T., Liu, L., Chen, Y., Sheng, X., Ji, J., 2017. A seven-million-year hornblende mineral record from the central Chinese Loess Plateau. Scientific Reports 7, 2382.
Jansen, J.H., Kuijpers, A., Troelstra, S.R., 1986. A mid-Brunhes climatic event: long-term changes in global atmosphere and ocean circulation. Science 232, 619622.
Jeong, G.Y., Achterberg, E.P., 2014. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmospheric Chemistry and Physics 14, 1241512428.
Jeong, G.Y., Hillier, S., Kemp, R.A., 2011. Changes in mineralogy of loess-paleosol sections across the Chinese Loess Plateau. Quaternary Research 75, 245255.
Jeong, G.Y., Kim, J.Y., Seo, J., Kim, G.M., Jin, H.C., Chun, Y., 2014. Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmospheric Chemistry and Physics 14, 505521.
Ji, J.F., Chen, J., Lu, H.Y., 1999. Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China. Clay Minerals 34, 525532.
Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., et al., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 6771.
Leinen, M., Prospero, J.M., Arnold, E., Blank, M., 1994. Mineralogy of aeolian dust reaching the North Pacific Ocean: 1. Sampling and analysis. Journal of Geophysical Research: Atmospheres 99, 2101721023.
Li, G.J., Pettke, T., Chen, J., 2011. Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology 39, 199202.
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.
Locke, W.W., 1979. Etching of hornblende grains in Arctic soils: an indicator of relative age and paleoclimate. Quaternary Research 11, 197212.
Maggi, V., 1997. Mineralogy of atmospheric microparticles deposited along the Greenland Ice Core Project ice core. Journal of Geophysical Research: Oceans 102, 2672526734.
Martin, J.H., 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 113.
Michalski, J.R., Reynolds, S.J., Sharp, T.G., Christensen, P.R., 2004. Thermal infrared analysis of weathered granitic rock compositions in the Sacaton Mountains, Arizona: implications for petrologic classifications from thermal infrared remote-sensing data. Journal of Geophysical Research: Planets 109, E03007.
Murakami, T., 1996. Weathering of chlorite in a quartz-chlorite schist: I. Mineralogical and chemical changes. Clays and Clay Minerals 44, 244256.
Nie, J., Peng, W., 2014. Automated SEM–EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau. Aeolian Research 13, 7175.
Nie, J., Peng, W., Pfaff, K., Möller, A., Garzanti, E., Andò, S., Stevens, T., et al., 2013. Controlling factors on heavy mineral assemblages in Chinese loess and Red Clay. Palaeogeography, Palaeoclimatology, Palaeoecology 381–382, 110118.
Nie, J., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., Bird, A., et al., 2015. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications 6, 8511.
Peng, S., Ge, J., Li, C., Liu, Z., Qi, L., Tan, Y., Cheng, Y., Deng, C., Qiao, Y., 2015. Pronounced changes in atmospheric circulation and dust source area during the mid-Pleistocene as indicated by the Caotan loess-soil sequence in North China. Quaternary International 372, 97107.
Porter, S.C., An, Z.S., 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.
Pye, K., 1987. Aeolian Dust and Dust Deposits. Academic Press, London.
Rittner, M., Vermeesch, P., Carter, A., Bird, A., Stevens, T., Garzanti, E., Andò, S., et al., 2016. The provenance of Taklamakan desert sand. Earth and Planetary Science Letters 437, 127137.
Stevens, T., Carter, A., Watson, T.P., Vermeesch, P., Andò, S., Bird, A.F., Lu, H., Garzanti, E., Cottam, M.A., Sevastjanova, I., 2013. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quaternary Science Reviews 78, 355368.
Sun, J.M., Ding, Z.L., Liu, T.S., 1998. Desert distributions during the glacial maximum and climatic optimum: example of China. Episodes 21, 2831.
Sun, Y., Clemens, S.C., Morrill, C., Lin, X., Wang, X., An, Z., 2012. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nature Geoscience 5, 4649.
Sutherland, D., 2007. Estimation of mineral grain size using automated mineralogy. Minerals Engineering 20, 452460.
Takahashi, Y., Higashi, M., Furukawa, T., Mitsunobu, S., 2011. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan. Atmospheric Chemistry and Physics 11, 1123711252.
Vandenberghe, J., Renssen, H., van Huissteden, K., Nugteren, G., Konert, M., Lu, H., Dodonov, A., Buylaert, J.-P., 2006. Penetration of Atlantic westerly winds into Central and East Asia. Quaternary Science Reviews 25, 23802389.
Wen, C., Graf, H.F., Ronghui, H., 2000. The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Advances in Atmospheric Sciences 17, 4860.
Yang, S., Ding, Z., 2008. Advance–retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacial–interglacial cycles. Earth and Planetary Science Letters 274, 499510.
Yang, S.L., Ding, Z.L., 2004. Comparison of particle size characteristics of the Tertiary “red clay” and Pleistocene loess in the Chinese Loess Plateau: implications for origin and sources of the “red clay.” Sedimentology 51, 7793.
Yang, T., Hyodo, M., Zhang, S., Maeda, M., Yang, Z., Wu, H., Li, H., 2013. New insights into magnetic enhancement mechanism in Chinese paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology 369, 493500.
Yang, X., Rost, K.T., Lehmkuhl, F., Zhenda, Z., Dodson, J., 2004. The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum. Quaternary International 118–119, 6985.
Zhang, H., Lu, H., Xu, X., Liu, X., Yang, T., Stevens, T., Bird, A., et al., 2016. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U-Pb age patterns. Journal of Geophysical Research: Earth Surface 121, 20852099.
Zhao, L., Ji, J., Chen, J., Liu, L., Chen, Y., Balsam, W., 2005. Variations of illite/chlorite ratio in Chinese loess sections during the last glacial and interglacial cycle: implications for monsoon reconstruction. Geophysical Research Letters 32, L20718.
Zhou, W., Beck, J.W., Kong, X., An, Z., Qiang, X., Wu, Z., Xian, F., Ao, H., 2014. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using 10Be. Geology 42, 467.


Type Description Title
Supplementary materials

He et al. supplementary material
He et al. supplementary material 1

 Word (62 KB)
62 KB
Supplementary materials

He et al. supplementary material
He et al. supplementary material 2

 Excel (66 KB)
66 KB

Glacial–interglacial change in chlorite concentration from the Lingtai section in the Chinese Loess Plateau over the past 1.2 Ma and its possible forcing mechanisms

  • Tong He (a1), Lianwen Liu (a1), Yang Chen (a1), Xuefen Sheng (a1), Junfeng Ji (a1) and Jun Chen (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed