Skip to main content Accessibility help
×
Home

Geologic setting and stratigraphy of the Ziegler Reservoir fossil site, Snowmass Village, Colorado

  • Jeffrey S. Pigati (a1), Ian M. Miller (a2), Kirk R. Johnson (a2), Jeffrey S. Honke (a1), Paul E. Carrara (a1), Daniel R. Muhs (a1), Gary Skipp (a1) and Bruce Bryant (a1)...

Abstract

The geologic setting of the Ziegler Reservoir fossil site is somewhat unusual — the sediments containing the Pleistocene fossils were deposited in a lake on top of a ridge. The lake basin was formed near Snowmass Village, Colorado (USA) when a glacier flowing down Snowmass Creek Valley became thick enough to overtop a low point in the eastern valley wall and entered the head of Brush Creek Valley. When the glacier retreated at about 155–130 ka, near the end of Marine Oxygen Isotope Stage 6, the Brush Creek Valley lobe left behind a moraine that impounded a small alpine lake. The lake was initially ~ 10 m deep and appears to have been highly productive during most of its existence, based on the abundant and exquisitely preserved organic material present in the sediments. Over time, the basin slowly filled with (mostly) eolian sediment such that by ~ 87 ka it contained a marsh or wetland rather than a true lake. Open-water conditions returned briefly between ~ 77 and 55 ka before the impoundment was finally breached to the east, establishing ties with the Brush Creek drainage system and creating an alpine meadow that persisted until historic times.

Copyright

Corresponding author

Corresponding author. Tel.: + 1 303 236 7870 (phone); fax: + 1 303 236 5349.E-mail address: jpigati@usgs.gov (J.S. Pigati).

Footnotes

Hide All
1 Current address: National Museum of Natural History, Smithsonian Institution, 1000 Jefferson Dr SW, Washington, DC 20004, USA.

Footnotes

References

Hide All
Benson, L., Madole, R., Phillips, W., Landis, G., Thomas, T., and Kubik, P. The probable importance of snow and sediment shielding on cosmogenic ages of north-central Colorado Pinedale and pre-Pinedale moraines. Quaternary Science Reviews 23, (2004). 193206.
Benson, L., Madole, R., Landis, G., and Gosse, J. New data for Late Pleistocene Pinedale alpine glaciation from southwestern Colorado. Quaternary Science Reviews 24, (2005). 4965.
Birkeland, P.W. Use of relative age-dating methods in a stratigraphic study of rock glacier deposits, Mt. Sopris, Colorado. Arctic and Alpine Research 5, (1973). 401416.
Birkeland, P.W. Soils and Geomorphology. (1999). Oxford University Press, New York.
Birkeland, P.W., Shroba, R.R., Burns, S.F., Price, A.B., and Tonkin, P.J. Integrating soils and geomorphology in mountains — an example from the Front Range of Colorado. Geomorphology 55, (2003). 329344.
Bryant, B. (1972). Geologic map of the Highland Peak quadrangle. Pitkin County, Colorado. U.S. Geological Survey Map GC-932, 1:24,000 scale
Bryant, B. Geology of the Aspen 15-minute quadrangle, Pitkin and Gunnison Counties, Colorado. U.S. Geological Survey Professional Paper 1073. (1979). 1146.
Bryant, B., and Martin, P.L. The geologic story of the Aspen region. U.S. Geological Survey Bulletin (1988). 153. (1603)
Hallberg, G.R., Lucas, J.R., and Goodmen, C.M. Semi-quantitative analysis of clay mineralogy. Hallberg, G.R. Standard Procedures for Evaluation of Quaternary Materials in Iowa. (1978). Iowa Geological Survey, Iowa City, Iowa. 522.
Johnson, K.R., and Miller, I.M. Digging Snowmastodon: Discovering an Ice Age World in the Colorado Rockies. (2012). Denver Museum of Nature and Science and People's Press, Denver, CO.
Knell, K.L. Interim findings of geotechnical study, proposed Ziegler pond enlargement, Snowmass Village, Colorado. Mock, R.G., and Pawlak, S.L. Geotechnical Investigations Report for Ziegler Reservoir, Pitkin County, Colorado. (2009). URS Corporation, Glenwood Springs, CO. 125140.
Leonard, E.M., Plummer, M.A., and Carrara, P.E. Numerical modeling of the Snowmass Creek paleoglacier, Colorado and climate in the Rocky Mountains during the Bull Lake glaciation (MIS 6). Quaternary Research 82, (2014). 533541. (in this volume)
Licciardi, J.M., and Pierce, K.L. Cosmogenic exposure age chronologies of Pinedale and Bull Lake glaciations in greater Yellowstone and the Teton Range, USA. Quaternary Science Reviews 27, (2008). 814831.
Lucking, C., Johnson, K.R., Pigati, J.S., and Miller, I.M. Primary mapping, stratigraphic data and field methods for the Snowmastodon Project, Denver Museum of Nature and Science Technical Report #2012-04. (2012). 1102.
Mahan, S.A., Gray, H.J., Pigati, J.S., Wilson, J., Lifton, N.A., Paces, J.B., and Blauw, M. A geochronologic framework for the Ziegler Reservoir fossil site, Snowmass Village, Colorado. Quaternary Research 82, (2014). 490503. (in this volume)
McCalpin, J.P., and Irvine, J.R. Sackungen at the Aspen Highlands Ski Area, Pitkin County, Colorado. Environmental and Engineering Geoscience 1, (1995). 277290.
Muhs, D.R., and Benedict, J.B. Eolian additions to the late Quaternary alpine soils, Indian Peaks Wilderness Area, Colorado Front Range. Arctic Antarctic and Alpine Research 38, (2006). 120130.
Tweto, O. (1979). Geologic map of Colorado. U.S. Geological Survey Map, 1:500,000 scale
Vandenberghe, J. Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth-Science Reviews 121, (2013). 1830.
Ward, D.W., Anderson, R.W., Briner, J.P., and Guido, Z.A. Numerical modeling of cosmogenic deglaciation records, Front Range and San Juan mountains, Colorado. Journal of Geophysical Research - Earth Surface 114, (2009). http://dx.doi.org/10.1029/2008JF001057
Young, N.E., Briner, J.P., Leonard, E.M., Licciardi, J.M., and Lee, K. Assessing climatic and non-climatic forcing of Pinedale glaciation and deglaciation in the western U.S. Geology 39, (2011). 171174.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed