Skip to main content Accessibility help
×
Home

Geochemical characterization, correlation, and optical dating of tephra in alluvial sequences of central western Argentina

  • Phillip S. Toms (a1), Matthew King (a1), Marcelo A. Zárate (a2), Rob A. Kemp (a1) and Franklin F. Foit (a3)...

Abstract

The synthesis of paleoclimatic archives provided by loess and alluvial sequences of central Argentina has been hindered by the lack of a cohesive lithostratigraphic framework extending across the Chaco–Pampean plains and catchments of the Rios Desaguadero, Colorado, and Negro. This condition originates in part from the dearth of absolute chronological controls. The occurrence of discrete tephra layers across this region may provide an opportunity to address this deficiency if a tephrochronological framework can be established. The potential of such a project is assessed within the context of a pilot study constrained within alluvial sequences of central western Argentina proximal to potential source vents in the Southern Volcanic Zone. The intersite discrimination and correlation of tephra layers on a geochemical basis is examined, with indirect chronological control for the eruption of each generated by optical dating. Alluvial sediments on either side of each of five tephra units at a type site were dated using the optically stimulated luminescence of fine-silt-sized quartz, thus providing an age control on each tephra (ca. 24,000, 30,000, 32,000, 39,000, and 48,000 yr). The geochemical composition of each tephra was derived. Using these data, tephra layers at other sites in the study area were geochemically analyzed and in instances of statistical concordance in major oxide structure, correlated to the type site and therefore ascribed ages. This methodology identified a further sixth volcanic event between ca. 24,000 and 30,000 yr not registered by type-site tephras. The extension of this initial tephrochronological framework beyond the alluvial sequences of central western Argentina is encouraged by the occurrence of geochemically distinct tephra verified and dated in this study.

Copyright

Corresponding author

*Corresponding author. Fax: +44-0-1242-543283. E-mail address: ptoms@glos.ac.uk(P.S. Toms).

Footnotes

Hide All
1 Present address: Geochronology Laboratories, School of Environment, University of Gloucestershire Swindon Road, Cheltenham, Gloucestershire, GL50 4AZ, UK.

Footnotes

References

Hide All
Adamiec, G., Aitken, M.J., (1998). Dose rate conversion factors: new data. Ancient TL 16, 3750.
Aitken, M.J., (1985). Thermoluminescence Dating. Academic Press, London.
Auer, V., (1974). The isorhythmicity subsequent to the Fuego–Patagonian and Fenoscandian ocean level transgressions and regressions of the last glaciation. Annales Academia Scientiarum Fennicae Series A III 115, 1188.
Begét, J.E., Keskinen, M.J., Severin, K.P., (1997). Tephrochronologic constraints on the Late Pleistocene history of the southern margin of the Cordilleran Ice Sheet, western Washington. Quaternary Research 47, 140146.
Benson, L.V., Smoot, J.P., Michaele, K., Sarna-Wojcicki, A., Burdett, J.W., (1997). Radiocarbon ages and environments of deposition of the Wono and Trego Hot Springs tephra layers in the Pyramid Lake Subbasin, Nevada. Quaternary Research 47, 251260.
Berger, G.W., Huntley, D.J., (1983). Dating volcanic ash by thermoluminescence. PACT 9, 581592.
Berger, G.W., Huntley, D.J., (1994). Tests for optically stimulated luminescence from tephra glass. Quaternary Science Reviews (Quaternary Geochronology) 13, 509512.
Berger, G.W., Mulhern, P.J., Huntley, D.J., (1980). Isolation of silt-sized quartz from sediments. Ancient TL 11, 147152.
Berger, G.W., Neill, P.A., (1999). Photon-stimulated-luminescence (PSL) dating tests of glass-rich volcanic ash. Abstracts: LED99, 9th International Conference on Luminescence and Electron Spin Resonance Dating. Rome 138.
Blasi, A., Zárate, M., Kemp, R., (2001). Sedimentación y pedogénesis cuaternaria en el noreste de la pampa bonaerense: la localidad Gorina como caso de estudio. Revista Argentina de Sedimentologı́a 8, 1 7792.
Bonadonna, F.P., Leone, G., Zanchetta, G., (1995). Composición isotópica de los fósiles de gasterópodos continentales de la provincia de Buenos Aires. Indicaciones paleoclimáticas. Alberdi, M.T., Leone, G., Tonni, E.P., Un ensayo de correlación con el Mediterráneo occidental. Evolución biológica y climática de la región pampeana durante los últimos cinco millones de años Monografı́as del Museo Nacional de Ciencias Naturales, Madrid.77104.
Bonde, A., Murray, A.S., Friedrich, W.L., (2001). Santorini: Luminescence dating of a volcanic province using quartz?. Quaternary Science Reviews (Quaternary Geochronology) 20, 789793.
Borchardt, G.A., Aruscavage, P.J., Millard, H.T. Jr., (1972). Correlation of Bishop Ash, a Pleistocene marker bed, using instrumental neutron activation analysis. Journal of Sedimentary Petrology 42, 301306.
Bøtter-Jensen, L., Mejdahl, V., Murray, A.S., (1999). New light on OSL. Quaternary Science Reviews (Quaternary Geochronology) 18, 303310.
Busacca, A.J., Nelstead, K.T., McDonald, E.V., Purser, M.D., (1992). Correlation of distal tephra layers in loess in the Channelled Scabland and Palouse of Washington State. Quaternary Research 37, 281303.
Carey, S.N., Sigurdsson, H., (1978). Deep-sea evidence for distribution of tephra from the mixed magma eruption of Soufriere on St. Vincent, 1902: Ash turbidites and airfall. Geology 6, 271274.
Carr, M.J., Walker, J.A., (1987). Intra-eruption changes in composition of some mafic to intermediate tephras from Central America. Journal of Volcanology and Geothermal Research 33, 147159.
Clapperton, C., (1993). Quaternary geology and geomorphology of South America. Elsevier, Amsterdam.779.
D'Antoni, H., (1983). Pollen analysis of Gruta del Indio. Quaternary of South America and Antarctic Peninsula 1, 83104.
Davies, S.M., Branch, N.P., Lowe, J.J., Turney, C.S.M., (2002). Towards a European tephrochronological framework for Termination I and the early Holocene. Philosophical Transaction of the Royal Society of London Series A 360, 767802.
Davies, S.M., Turney, C.S.M., Lowe, J., (2001). Identification and significance of a visible, basalt-rich Vedde Ash layer in a Late-glacial sequence on the Isle of Skye, Inner Hebrides, Scotland. Journal of Quaternary Science 16, 99104.
Dugmore, A.J., Newton, A.J., Sugden, D.E., (1992). Geochemical stability of fine-grained silicic Holocene tephra in Iceland and Scotland. Journal of Quaternary Science 7, 173183.
Fleming, S.J., (1973). The pre-dose technique: a new thermoluminescence dating method. Archaeometry 15, 1330.
Fisher, R.V., Schminke, H.U., (1984). Pyroclastic Rocks. Springer-Verlag, New York.
Foit, F.F. Jr., Mehringer, P.J., Sheppard, J.C., (1993). Age, Distribution and stratigraphy of Glacier Peak tephra in eastern Washington and western Montana, United States. Canadian Journal of Earth Sciences 30, 535552.
González Bonorino, F., (1965). Mineralogı́a de las fracciones arcilla y limo del Pampeano en el área de la ciudad de Buenos Aires y su significado estratigráfico y sedimentológico. Asociación Geológica Argentina Revista 20, 67148.
Green, J.R., Margerison, D., (1978). Statistical Treatment of Experimental Data. Elsevier Scientific, New York.
Gronvold, K., Oskarsson, N., Johnsen, S.J., Clausen, H.B., Hammer, C.U., Bond, G., Bard, E., (1995). Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land based sediments. Earth and Planetary Science Letters 54, 238246.
Guerstein, G.R., (1993). Origen y Significado Geológico de la Asociación Piroclástica Pumı́cea.. Pleistoceno de la Provinica de Mendoza entre los 33 30 y 34 40 L.S., tesis doctoral. Museo de la Plata.
Hallett, D.J., Mathewes, R.W., Foit, F.F. Jr., (2001). Mid-Holocene Glacier Peak and Mount St. Helens We tephra layers detected in lake sediments from southern British Columbia using high-resolution techniques. Quaternary Research 55, 284292.
Heusser, C.J., (1991). Biogeographic evidence for late Pleistocene palaeoclimate of Chile. Bamberger Geographische Schriften 11, 257270.
Hildreth, W., Drake, R., (1992). Volcán Quizapu, Chilean Andes. Bulletin of Volcanology 54, 93125.
Hildreth, W., Grunder, A.L., Drake, R.E., (1984). The Loma Seca Tuff and the Calabozos Caldera: a major ash flow and caldera complex in the Southern Andes of Central Chile. Petrochemistry and age of rhyolitic pyroclastic flows which occur along the drainage valleys of the Rı́o Maipo and Rı́o Cahapoal (Chile) and the Rı́o Yaucha and Rı́o Papagayos (Argentina). Revista Geológica de Chile vol. 23, 3952.
Hooper, P.R., Herrick, I.W., Laskowski, E.R., Knowles, C.R., (1980). Composition of the Mt. St. Helens ashfall in the Moscow–Pullman Area on 18 May 1980. Science 209, 11251126.
Hütt, G., Jaek, I., Tchonka, J., (1988). Optical dating: K-feldspars optical response stimulation spectra. Quaternary Science Reviews 7, 381386.
Inbar, M., Risso, C., (2001). A morphological and morphometric analysis of a high density cinder cone volcanic field-Payun Matru, southe central Andes, Argentina. Zeitschrift für Geomorphologie, None Folse 45, 3 321343.
Imbellone, P.A., Camilión, C., (1988). Characterization of a buried tephra layer in soils of Argentina. Pedologie 38, 155171.
Iriondo, M., (1993). Geomorphology and Late Quaternary of the Chaco (South-America). Geomorphology 7, 289303.
Iriondo, M., (1997). Models of deposition of loess and loessoids in the upper Quaternary of South America. Journal of South American Earth Sciences 10, 7179.
Iriondo, M., (1999). The origin of silt particles in the loess question. Quaternary International 62, 39.
Iriondo, M., (2000). Patagonian dust in Antarctica. Quaternary International 68, 8386.
Jackson, M.L., Sayin, M., Clayton, R.N., (1976). Hexafluorosilicic acid regent modification for quartz isolation. Soil Science Society of America Journal 40, 958960.
Kemp, R.A., Zárate, M.A., (2000). Pliocene pedosedimentary cycles in the southern Pampas, Argentina. Sedimentology 47, 314.
King, M., Busacca, A.J., Foit, F.F. Jr., Kemp, R.A., (2001). Identification of disseminated Trego Hot Springs tephra in the Palouse, Washington State. Quaternary Research 56, 165169.
Kittl, E., (1933). Estudio sobre los fenómenos volcánicos y material caido durante la erupción del grupo del “Descabezado” en el mes be abril de 1932. Anal Museo Nacional Historica Naturale 37, 321364.
Kraglievich, J.L., (1952). El perfil geológico de Chapadmalal y Miramar. Provincia de Buenos Aires. Revista Museo municipal Ciencias Naturales y Tradicionalista de Mar del Plata 1 837.
Kröhling, D.M., (1999). Upper Quaternary geology of the lower Carcaraná Basin, North Pampa, Argentina. Quaternary International 57/58, 135148.
Kukla, G., (1989). Long continental records of climate—an introduction. Palaeogeography, Palaeoclimatology, Palaeoecology 72, 19.
Kvamme, T., Mangerud, J., Furnes, H., Ruddiman, W.F., (1989). Geochemistry of Pleistocene ash zones in cores from the North Atlantic. Norsk Geologisk Tidsskrift 69, 251272.
Larsson, W., (1937). Vulkanische Asche vom Ausbruch des Chile-nischen Vulkans Quizapu (1932) in Argentina gesammelt. Bulletin of the Geological Institution of the University of Upsala 26, 2752.
Li, S.-H., Yin, G.-M., (2001). Luminescence dating of young volcanic activity in China. Quaternary Science Reviews (Quaternary Geochronology) 20, 865868.
Madsen, D.B., Sarna-Wojcicki, A.M., Thompson, R.S., (2002). A late Pleistocene tephra layer in the southern Great Basin and Colorado plateau derived from Mono Craters, California. Quaternary Research 57, 382390.
Markgraf, V., (1983). Late and postglacial vegetational and paleoclimatic changes in subantarctic, temperate and arid environments in Argentina. Palynology 7, 4370.
Morrás, H., (1994). Descripción y caracterización análitica de depósitos piroclásticos en dos perfiles de suelo de la región chaqueña. V Reunión Argentina de Sedimentologı́a Actas, Tucumán.165170.
Muhs, D., Zárate, M., (2001). Late Quaternary eolian records of the Americas and their palaeoclimatic significance. Markgraf, V., Interhemispheric Climate Linkages Academic Press, New York.183216.
Murray, A.S., Wintle, A.G., (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.
Nabel, P.E., Morrás, H.J.M., Petersen, N., Zech, W., (1999). Correlation of magnetic and lithologic features of soils and Quaternary sediments from the undulating Pampa, Argentina. Journal of South American Earth Sciences 12, 311323.
Naranjo, J.A., Haller, M.J., Ostera, H.A., Pesce, A.H., Sruoga, P., (1999). Geologı́a y peligros del complejo volcánico Planchón-Peteroa, Andes del sur (35, 15 S), región del Maule, Chile—provincia de Mendoza, Argentina, Boletı́n vol. 52, Servicio Nacional de Geologı́a y Minerı́a, Santiago.
Polanski, J., (1963). Estratigrafı́a, neotectónica y geomorfologı́a del Pleistoceno pedemontano entre los rı́os Diamante y Mendoza. Revista de la Asociación Geológica Argentina XVII 3–4, 127349.
Prescott, J.R., Hutton, J.T., (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.
Prieto, A.R., (1996). Late Quaternary vegetational and climatic changes in the Pampa grassland of Argentina. Quaternary Research 45, 7388.
Prieto, A.R., (2000). Vegetational history of the Lateglacial-Holocene transition in the grassland of eastern Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 157, 167188.
Prohaska, F., (1976). The climate of Argentina, Paraguay and Uruguay. Schwerdtfeger, W., World Survey of Climatology 12. Climates of Central and South America Elsevier, Amsterdam.13112.
Quatrocchio, M., Borromei, A., (1998). Paleovegetational and paleoclimatic changes during the Late Quaternary in southwestern Buenos Aires province and southern Tierra del Fuego (Argentina). Palynology 22, 6782.
Ramos, V., Almeida, A., (2000). Tectonic evolution of the Andes. Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A., Tectonic Evolution of South America 635685.
Ramos, V., Nullo, F.C., (1993). El volcanismo de arco cenozoico. Ramos, V.A., XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos (Mendoza, 1993). Geologı́a y Recursos Naturales de Mendoza, relatorio vol. 1 (12), 149160.
Rieck, H.J., Sarna-Wojcicki, A.M., Mayer, C.E., Adam, D.P., (1992). Magnetostratigraphy and tephrochronology of an Upper Pliocene to Holocene record in lake sediments at Tule Lake, Northern California. Geological Society of America Bulletin 104, 409428.
Sarna-Wojcicki, A.M., Davis, J.O., (1991). Quaternary tephrochronology. Morrison, R.B., The Geology of North America: Quaternary Nonglacial Geology; Conterminous United States Vol. k-2, Geological Society of America, Denver, CO.93115.
Smith, J., Vance, D., Kemp, R.A., Archer, C., Toms, P., King, M., Zárate, M., (2003). Isotopic constraints on the source of Argentinian loess—with implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima. Earth and Planetary Science Letters 212, 181196.
Stern, C., (1990). Tephrochronology of southernmost Patagonia. National Geographic Research 6, 110126.
Stern, C., (1992). Tefrocronologı́a de Magallanes: nuevos datos e implicaciones. Anales Instituto de la Patagonia 21, 129141.
Stern, C., Amini, H., Charrier, R., Godoy, E., Herve, F., Varela, J., (1984). Petrochemistry and age of rhyolitic pyroclastic flows which occur along the drainage valleys of the Rı́o Maipo and Rı́o Cahapoal (Chile) and the Rı́o Yaucha and Rı́o Papagayos (Argentina). Revista Geológica de Chile 23, 3952.
Stokes, S., Lowe, D.J., (1988). Discriminant Function analysis of Late Quaternary tephras from five volcanoes in New Zealand using glass shard major element chemistry. Quaternary Research 30, 270283.
Teruggi, M.E., (1957). The nature and origin of Argentine loess. Journal of Sedimentary Petrology 217, 322332.
Teruggi, M.E., Imbellone, P.A., (1987). Paleosuelos loéssicos superpuestos en el Pleistoceno Superior–Holoceno de la región de la Plata, Provincı́a de Buenos Aires, Argentina. Ciencia del Suelo 5, 176188.
Turney, C.S.M., Lowe, J.J., Wastegård, S., Cooper, R., Roberts, S.J., (2001). The development of a tephrochronological framework in the last glacial—Holocene transition in NW Europe. Juvignè, E., Raynal, J.-P., Tephras: Chronology, Archaeology, Dossiers de l'Archéo-Logis no. 1, Haute-Loire 101109.
Wintle, A.G., (1973). Anomalous fading of thermoluminescence in mineral samples. Nature 245, 143144.
Zárate, M.A., (2000). The Pleistocene/Holocene transition in the eastern Andean piedmont of Mendoza, Argentina. Current Research in the Pleistocene 17, 149151.
Zárate, M., (2002). Geologı́a y estratigrafı́a del Pleistoceno tardı́o-Holoceno en el piedemonte de Tupungato-Tunuyán, Mendoza, Argentina. XV Congreso Geológico Argentino, 24–26 de abril de 2002, Calafate, Santa Cruz ACTAS, Argentina.615620.
Zárate, M., Blasi, A., (1991). Late Pleistocene–Holocene eolian deposits of the southern Buenos Aires province, Argentina. GeoJournal 24, 211220.
Zárate, M.A., Kemp, R.A., Blasi, A.M., (2002). Identification and differentiation of Pleistocene paleosols in the northern pampas of Buenos Aires, Argentina. Journal of South American Earth Sciences 15, 303313.
Zimmerman, D.W., (1971). Thermoluminescent dating using fine grains from pottery. Archaeometry 13, 2952.

Keywords

Related content

Powered by UNSILO

Geochemical characterization, correlation, and optical dating of tephra in alluvial sequences of central western Argentina

  • Phillip S. Toms (a1), Matthew King (a1), Marcelo A. Zárate (a2), Rob A. Kemp (a1) and Franklin F. Foit (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.