Skip to main content Accessibility help

Forest history, peatland development and mid- to late Holocene environmental change in the southern taiga forest of central European Russia

  • Elena Yu. Novenko (a1) (a2), Andrey N. Tsyganov (a3), Natalia M. Pisarchuk (a4), Elena M. Volkova (a5), Kirill V. Babeshko (a3), Daniil N. Kozlov (a1) (a6), Pavel M. Shilov (a1), Richard J. Payne (a3) (a7), Yuri A. Mazei (a4) (a8) and Alexander V. Olchev (a1) (a9)...


Understanding the long-term ecological dynamics of boreal forests is essential for assessment of the possible responses and feedbacks of forest ecosystems to climate change. New data on past forest dynamics and peatland development were obtained from a peat sequence in the southern Valdai Hills (European Russia) based on pollen, plant macrofossil, micro-charcoal, peat humification, and testate amoeba analyses. The results demonstrate a dominance of broadleaved forests in the study area from 7000–4000 cal yr BP. Picea was initially a minor component of this forest but increased in cover rapidly with climatic cooling beginning at 4000 cal yr BP, becoming the dominant species. Broadleaved species persisted until 900 cal yr BP, with evidence for intensified felling and forest management over recent centuries. Over the last four hundred years there is evidence for widespread paludification and the establishment of Picea-Sphagnum forests. These data demonstrate how modern wet woodlands have been shaped by a combination of climatic and anthropogenic factors over several millennia. The results also demonstrate the value of a multiproxy approach in understanding long-term forest ecology.


Corresponding author

*Corresponding author at: Faculty of Geography, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia. E-mail address: (E.Yu. Novenko).


Hide All
Arslanov, Kh.A., Saveljeva, L.A., Gey, N.A., Klimanov, V.A., Chernov, S.B., Chernova, G.M., Kusmin, G.F., Tertychnaya, T.V., Subetto, D.A., Denisenkov, V.P., 1999. Chronology of vegetation and paleoclimate stages of Northwestern Russia during the late Glacial and Holocene. Radiocarbon 41, 2545.
Behre, K.-E., 1981. The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 23, 225245.
Berger, A., 1978. Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quaternary Research 9, 138167.
Beug, H.-J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Friedrich Pfeil, Munich.
Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.
Bonan, G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 14441449.
Bonan, G.B., Pollard, D., Thompson, S.L., 1992. Effects of boreal forest vegetation on global climate. Nature 359, 716718.
Budyko, M.I., 1974. Climate and Life. Academic Press, Orlando.
Caseldine, C., Hatton, J., 1993. The development of high moorland on Dartmoor: fire and the influence of Mesolithic activity on vegetation change. In Chambers, F.M. (Ed.), Climate Change and Human Impact on the Landscape. Chapman and Hall, London, pp. 119131.
Chambers, F.M., Beilman, D.W., Yu, Z., 2010/2011. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland. Mires and Peat 7, 110.
Chepurnaya, A.A., Novenko, E.Yu., 2015. Pollen database from territory of Russia and adjacent countries as a tool for paleoecological research. Russian Academy of Sciences, Izvestiya, Seria Geografiya 1, 119128.
Clark, R.L., 1982. Point count estimation of charcoal in pollen preparations and thin sections of sediments. Pollen et Spores 24, 523535.
Clear, J.L., Seppä, H., Kuosmanen, N., Bradshaw, R.H.W., 2015. Holocene stand-scale vegetation dynamics and fire history of an old growth spruce forest in southern Finland. Vegetation History and Archaebotany 24, 731741.
Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., Data Contributors. 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22, 17011716.
Davis, B.A.S, Zanon, M., Collins, P., Mauri, A., Bakker, J., Barboni, D., Barthelmes, A., et al., 2013. The European modern pollen database (EMPD) project. Vegetation History and Archaeobotany 22, 521530.
Dean, W. Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sediment Research 44, 242248.
Desherevskaya, O., Kurbatova, J., Olchev, A., 2010. Climatic conditions of the south part of Valday Hills, Russia, and their projected changes during the 21st century. Open Geography Journal 3, 7379.
Dombrovskaya, A.V., Koreneva, M.M., Turemnov, S.N., 1959. Atlas of Plant Remains in Peat [In Russian.] Nauka, Moscow-Leningrad.
Ershov, D.V., 2007. Methods of assessment of area covered by forests using satellite imaging MODIS of moderate spatial resolution. [In Russian.], Modern Problems of Remote Sensing of the Earth from Space 2, 217225.
Finsinger, W., Tinner, W., Hu, F.S., 2008. Rapid and accurate estimates of microcharcoal content in pollen slides. In Fiorentino, G., Magri, D. (Eds.), Charcoals from the Past: Cultural and Palaeoenvironmental Implications (BAR International Series Vol. 1807. Archaeopress, Oxford, pp. 121124.
Foley, J.A., Kutzbach, J.E., Coe, M.T., Levis, S., 1994. Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371, 5254.
Giesecke, T., 2005. Moving front or population expansion: how did Picea abies (L.) Karst. become frequent in central Sweden? Quaternary Science Reviews 24, 24952509.
Giesecke, T., Bennett, K.D., 2004. The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. Journal of Biogeography 31, 15231548.
Glushkov, I.V., Sirin, A.A., Minayeva, T.Y., 2016. Influences of hydrological conditions on development of the watershed forest peatlands and boggy forests in the Central Forest Reserve. [In Russian.], Lesovedenie 6, 403417.
Grace, J., Meir, P., Malhi, Y., 2001. Keeping track of carbon flows between biosphere and atmosphere. In Press, M.C., Huntly, N., Levin, S. (Eds.), Ecology: Achievement and Challenge: 41st Symposium of the British Ecological Society. Blackwell Science, Blackwell. Boston, pp. 249269.
Grimm, E.C.A, 1987. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.
Grimm, E.C.A., 1990. TILIA and TILIA*GRAPH.PC spreadsheet and graphics software for pollen data. INQUA Working Group on Data-Handling Methods Newsletter 4, 57.
Gromtsev, A., 2002. Natural disturbance dynamics in the boreal forests of European Russia: a review. Silva Fennica 36, 4155.
Hansen, M., Townshend, J., DeFries, R., Carroll, M., 2005. Estimation of tree cover using MODIS data at global, continental and regional/local scales. International Journal of Remote Sensing 26, 43594380.
Heikkilä, M., Seppä, H., 2010. Holocene climate dynamics in Latvia, eastern Baltic region: a pollen-based summer temperature reconstruction and regional comparison. Boreas 39, 705719.
Hendon, D., Charman, D.J., 1997. The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat. The Holocene 7, 199205.
Hua, Q., Barbetti, M., Rakowski, A.Z., 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55, 20592072.
Hytteborn, H., Maslov, A.A., Nazimova, D.I., Rysin, L.P., 2005. Boreal forests of Eurasia. In Andersson, F. (Ed.), Ecosystems of the World 6: Coniferous Forests. Elsevier, Amsterdam, pp. 2398.
Intergovernmental Panel on Climate Change (IPCC). 2013. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge.
Kalis, A.J., Merkt, J., Wunderlich, J., 2003. Environmental changes during the Holocene climatic optimum in central Europe - human impact and natural causes. Quaternary Science Reviews 22, 3379.
Kalnina, L., Stivrins, N., Kuske, E., Ozola, I., Pujate, A., Zeimule, S., Grudzinska, I., Ratniece, V., 2015. Peat stratigraphy and changes in peat formation during the Holocene in Latvia. Quaternary International 383, 186195.
Kaplan, J.O., Kristen M. Krumhardt, K.M., Zimmermann, M., 2009. The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews 28, 30163034.
Kasin, I., Blanck, Y., Storaunet, K.O., Rolstad, J., Ohlson, M., 2013. The charcoal record in peat and mineral soil across a boreal landscape and possible linkages to climate change and recent fire history. The Holocene 23, 10521065.
Katz, N.Y., Katz, S.V., Skobeva, E.I., 1977. Atlas of Plant Remains in Peat [In Russian.] Nedra-press, Moscow.
Khotinski, N.A., Klimanov, V.A., 1997. Alleröd, Younger Dryas and early Holocene palaeo-environmental stratigraphy. Quaternary International 41/42, 6770.
Kilpeläinen, A., Kellomäki, S., Strandman, H., Venäläinenen, A., 2010. Climate change impacts on forest fire potential in boreal conditions in Finland. Climatic Change 103, 383–198.
Krementski, K.V., Borisova, O.K., Zelikson, E.M., 2000. The Late Glacial and Holocene history of vegetation in the Moscow region. Paleontological Journal 34, 6774.
Kunes, P., Svobodova-Svitavska, H., Kolar, J., Hajnalova, M., Abraham, V., Macek, M., Tkac, P., Szabo, P., 2015. The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quaternary Science Reviews 116, 1527.
Kuosmanen, N., Seppä, H., Reitalu, T., Alenius, T., Bradshaw, R.W.H., Clear, J.L., Filimonova, L, Kuznetsov, O., 2016. Long-term forest composition and its drivers in taiga forest in NW Russia. Vegetation History and Archaeobotany 25, 221236.
Lishtvan, I.I., Korol, N.T., 1975. The Main Properties of Peat and Methods of its Determination [In Russian.] Nauka i Technika, Minsk.
Lisitsyna, O.V., Giesecke, T., Hicks, S., 2011. Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. Review of Palaeobotany and Palynology 166, 311324.
Luyssaert, S.E., Schulze, D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E., Ciais, P., Grace, J., 2008. Old-growth forests as global carbon sinks. Nature 455, 213215.
Malhi, Y., Baldocchi, D.D., Jarvis, P.G., 1999. The carbon balance of tropical, temperate and boreal forests. Plant Cell and Environment 22, 715740.
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. GLOBAL signatures and dynamical origins of the Little Ice Age and Medieval climate anomaly. Science 326, 12561260.
Marquer, L., Gaillard, M.-J., Sugita, S., Trondman, A.-K., Mazier, F., Nielsen, A.B., Fyfe, R.M., et al., 2014. Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter. Quaternary Science Reviews 90, 199216.
Mauquoy, D., Engelkes, T., Groot, M.H.M., Markesteijn, F., Oudejans, M.G., van der Plicht, J., van Geel, B., 2002. High-resolution records of late Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs. Palaeogeography, Palaeoclimatology, Palaeoecology 186, 275310.
Mauquoy, D., Yeloff, D., 2008. Raised peat bog development and possible responses to environmental changes during the mid- to late-Holocene. Can the palaeoecological record be used to predict the nature and response of raised peat bogs to future climate change? Biodiversity and Conservation 17, 21392151.
Mauri, A., Davis, B.A.S., Collins, P.M., Kaplan, J.O., 2015. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews 112, 109127.
Mazei, Yu, Chernyshov, V., Tsyganov, A.N., Payne, R.J., 2015. Testing the effect of refrigerated storage on testate amoeba samples. Microbial Ecology 70, 861864.
Minayeva, T.Yu., Trofimov, S.Ya., Dorofeyeva, E.I., Chichagova, O.A., Sirin, A.A., Glushkov, I.V., Mikhailov, N.D., Kromer, B., 2008. Carbon accumulation in soils of forest and bog ecosystems of southern Valdai in the Holocene. Biology Bulletin 35, 524532.
Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, U., Zhang, L., Anderson, C.J, Jørgensen, S.E., Brix, H., 2013. Wetlands, carbon, and climate change. Landscape Ecology 28, 583597.
Moore, P.D., 1993. The origin of blanket mire, revisited. In Chambers, F.M. (Ed.), Climate Change and Human Impact on the Landscape. Chapman and Hall, London, pp. 217224.
Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis. Blackwell, Oxford.
Nakagawa, T., Tarasov, P., Kotoba, N., Gotanda, K., Yasuda, Y., 2002. Quantitative pollen-based climate reconstruction in Japan: application to surface and late Quaternary spectra. Quaternary Science Reviews 21, 20992113.
Niinemets, E., Saarse, L., 2009. Holocene vegetation and land-use dynamics of south-eastern Estonia. Quaternary International 207, 104116.
Nosova, M.B., Severova, E.E., Volkova, O.A., Kosenko, J.V., 2015. Representation of Picea pollen in modern and surface samples from Central European Russia. Vegetation History and Archaeobotany 24, 319330.
Novenko, E., Olchev, A., Desherevskaya, O., Zuganova, I., 2009a Paleoclimatic reconstructions for the south of Valdai Hills (European Russia) as paleo-analogs of possible regional vegetation changes under global warming. Environmental Research Letters 4, 045016.
Novenko, E.Y., Tsyganov, A.N., Volkova, E.M., Babeshko, K.V., Lavrentiev, N.V., Payne, R.J., Mazei, Y.A., 2015. The Holocene palaeoenvironmental history of Central European Russia reconstructed from pollen, plant macrofossil and testate amoeba analyses of the Klukva peatland, Tula region. Quaternary Research 2015, 459468.
Novenko, E.Y., Tsyganov, A.N., Volkova, E.M., Kupriyanov, D.A., Mironenko, I.V., Babeshko, K.V., Utkina, A.S., Popov, V., Mazei, Y.A., 2016. Mid- and Late Holocene vegetation dynamics and fire history in the boreal forest of European Russia: a case study from Meshchera Lowlands. Palaeogeography, Palaeoclimatology, Palaeoecology 459, 570584.
Novenko, E.Y., Eremeeva, A.P., Chepurnaya, A.A., 2014. Reconstruction of Holocene vegetation, tree cover dynamics and human disturbances in central European Russia, using pollen and satellite data sets. Vegetation History and Archaeobotany 23, 109119.
Novenko, E.Yu., Mazei, N.G., Zernitskaya, V.P., 2017. Recent pollen assemblages from protected areas of European Russia as a key to interpreting the results of paleoecological studies. Nature Conservation Research 2, 5565.
Novenko, E.Yu., Volkova, E.M., Nosova, M.B., Zuganova, I.S., 2009b Late Glacial and Holocene landscape dynamics in the southern taiga zone of East European Plain according to pollen and macrofossil records from the Central Forest State Reserve (Valdai Hills, Russia). Quaternary International 207, 93103.
Olchev, A., Novenko, E., 2011. Estimation of potential and actual evapotranspiration of boreal forest ecosystems in the European part of Russia during the Holocene. Environmental Research Letters 6, 045213.
Olchev, A.V., Deshcherevskaya, O.A., Kurbatova, Yu.A., Molchanov, A.G., Novenko, E.Yu., Pridacha, V.B., Sazonova, T.A., 2013. CO2 and H2O exchange in the forest ecosystems of Southern Taiga under climate changes. Doklady Biological Sciences 450, 173176.
Oltchev, A., Cermak, J., Gurtz, J., Kiely, G., Nadezhdina, N., Tishenko, A., Zappa, M., et al., 2002a The response of the water fluxes of the boreal forest region at the Volga’s source area to climatic and land-use changes. Physics and Chemistry of the Earth 27, 675690.
Oltchev, A., Cermak, J., Nadezhdina, N., Tatarinov, F., Tishenko, A., Ibrom, A., Gravenhorst, G., 2002b Transpiration of a mixed forest stand: field measurements and simulation using SVAT models. Journal of Boreal Environmental Research 7, 389397.
Overpeck, J.T., Webb, T. III., Prentic, I.C.A., 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23, 87108.
Payne, R.J., Malysheva, E., Tsyganov, A.N., Pampura, T., Novenko, E., Volkova, E., Babeshko, K., Mazei, Yu., 2016. A multi-proxy record of Holocene environmental change, peatland development and carbon accumulation from Staroselsky Moch peatland, Russia. The Holocene 26, 314326.
Pitkänen, A., Tolonen, K., Jungner, H., 2001. A basin-based approach to the long-term history of forest fires as determined from peat strata. The Holocene 11, 599605.
Pluchon, N., Hugelius, G., Kuusinen, N., Kuhry, P., 2014. Recent paludification rates and effects on total ecosystem carbon storage in two boreal peatlands of Northeast European Russia. The Holocene 24, 11261136.
R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Ralska-Jasiewiczowa, M., Nalepka, D., Goslar, T., 2003. Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Vegetation History and Archaeobotany 12, 233247.
Reille, M., 1992. Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille.
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al., 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP. Radiocarbon 55, 18691887.
Ruckstuhl, K.E., Johnson, E.A., Miyanishi, K., 2008. Introduction: the boreal forest and global change. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 22452249.
Saarse, L., Poska, A., Kaup, E., Heinsalu, A., 1998. Holocene environmental events in the Viitna area, north Estonia. Proceedings of the Estonian Academy of Sciences, Geology 47, 3144.
Seppä, H., Birks, H.J.B., 2001. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. The Holocene 11, 527539.
Seppä, H., Poska, A., 2004. Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quaternary Research 61, 2231.
Shugart, H.H., Woodward, F.I., 2011. Global Change and the Terrestrial Biosphere: Achievements and Challenges. Wiley-Blackwell Press, Oxford.
Simpson, G.L., 2007. Analogue Methods in Palaeoecology: Using the analogue package. Journal of Statistical Software 22, 129.
Soja, A.J., Tchebakova, N.M., French, N.H.F., Flannigan, M.D., Shugart, H.H., Stocks, B.J., Sukhinin, A., Parfenova, E., Chapin, F.S. III., Stackhouse, P.W., 2007. Climate-induced boreal forest change: Predictions versus current observations. Global and Planetary Change 56, 274296.
Stančikaite, M., Baltrŭnas, V, Šinkŭnas, P., Kisielienė, D., Ostrauskas, T., 2006. Human response to the Holocene environmental changes in the Biržulis Lake region, NW Lithuania. Quaternary International 150, 113129.
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 1, 615621.
Tuittila, E.-S., Juutinen, S., Frolking, S., Väliranta, M., Laine, A.M, Miettinen, A., Seväkivi, M.-L., Quillet, A., Merilä, P., 2014. Wetland chronosequence as a model of peatland development: Vegetation succession, peat and carbon accumulation. The Holocene 23, 2535.
van der Linden, M., Heijmans, M.P.D., van Geel, B., 2014. Carbon accumulation in peat deposits from northern Sweden to northern Germany during the last millennium. The Holocene 24, 11171125.
Velichko, A.A., Kremenetski, K.V., Negendank, J., Mingram, J., Borisova, O.K., Gribchenko, Yu.N., Zelikson, E.M., et al., 2001. Late Quaternary paleogeography of the north-east of Europe based (on the complex study of the Galich lake sediments). [In Russian.], Russian Academy of Sciences, Izvestiya, Seria Geografiya 3, 4254.
Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., et al., 2008. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, 17911828.
Wright, H.E., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrot, E.A., Bartlein, P.J. (Eds.), 1993. Global Climates Since the Last Glacial Maximum. University of Minnesota Press, Minneapolis, Minnesota.
Zernitskaya, V., Mikhailov, N., 2009. Evidence of early farming in the Holocene pollen spectra of Belarus. Quaternary International 203, 91104.
Zernitskaya, V., Stančikaitė, M., Vlasov, B., Šeirienė, V., Kisielienė, D., Gryguc, G., Skipitytė, R., 2015. Vegetation pattern and sedimentation changes in the context of the Lateglacial climatic events: case study of Staroje Lake (Eastern Belarus). Quaternary International 386, 7082.


Forest history, peatland development and mid- to late Holocene environmental change in the southern taiga forest of central European Russia

  • Elena Yu. Novenko (a1) (a2), Andrey N. Tsyganov (a3), Natalia M. Pisarchuk (a4), Elena M. Volkova (a5), Kirill V. Babeshko (a3), Daniil N. Kozlov (a1) (a6), Pavel M. Shilov (a1), Richard J. Payne (a3) (a7), Yuri A. Mazei (a4) (a8) and Alexander V. Olchev (a1) (a9)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed