Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T21:46:01.690Z Has data issue: false hasContentIssue false

Evidence of temperature depression and hydrological variations in the eastern Sierra Nevada during the Younger Dryas Stade

Published online by Cambridge University Press:  20 January 2017

Glen M. MacDonald*
Affiliation:
Department of Geography, UCLA, Los Angeles, CA 90095-1524, USA Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095-1524, USA
Katrina A. Moser
Affiliation:
Department of Geography, University of Western Ontario, London, ON, Canada N6A 5B8
Amy M. Bloom
Affiliation:
Department of Geography-Geology, Illinois State University, Normal, IL 61790-4400, USA
David F. Porinchu
Affiliation:
Department of Geography, The Ohio State University, Columbus, OH 43210, USA
Aaron P. Potito
Affiliation:
Department of Geography, National University of Ireland, Galway, Republic of Ireland
Brent B. Wolfe
Affiliation:
Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
Thomas W.D. Edwards
Affiliation:
Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada N2L 3G1
Amanda Petel
Affiliation:
Department of Geography, UCLA, Los Angeles, CA 90095-1524, USA
Antony R. Orme
Affiliation:
Department of Geography, UCLA, Los Angeles, CA 90095-1524, USA
Amalie Jo Orme
Affiliation:
Department of Geography, CSU Northridge, Northridge, CA 91330-8249, USA
*
*Corresponding author. Department of Geography, UCLA, Los Angeles, CA 90095-1524, USA. E-mail address:macdonal@geog.ucla.edu (G.M. MacDonald).

Abstract

Sediment records from two lakes in the east-central Sierra Nevada, California, provide evidence of cooling and hydrological shifts during the Younger Dryas stade (YD; ~ 12,900–11,500 cal yr BP). A chironomid transfer function suggests that lake-water temperatures were depressed by 2°C to 4°C relative to maximum temperatures during the preceding Bølling–Allerød interstade (BA; ~ 14,500–12,900 cal yr BP). Diatom and stable isotope records suggest dry conditions during the latter part of the BA interstade and development of relatively moist conditions during the initiation of the YD stade, with a reversion to drier conditions later in the YD. These paleohydrological inferences correlate with similar timed changes detected in the adjacent Great Basin. Vegetation response during the YD stade includes the development of more open and xeric vegetation toward the end of the YD. The new records support linkages between the North Atlantic, the North Pacific, and widespread YD cooling in western North America, but they also suggest complex hydrological influences. Shifting hydrological conditions and relatively muted vegetation changes may explain the previous lack of evidence for the YD stade in the Sierra Nevada and the discordance in some paleohydrological and glacial records of the YD stade from the western United States.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, D.P., (1985). Quaternary pollen records from California.. Bryant, V.M., Holloway, R.G. Pollen records of Late Quaternary North American sediments American Association of Stratigraphic Palynologists Foundation, Dallas., pp. 125140.Google Scholar
Adams, K.D., (2007). Late Holocene sedimentary environments and lake-level fluctuations at Walker Lake, Nevada, USA.. Geological Society of America Bulletin 119, 126139.CrossRefGoogle Scholar
Alley, R.B., (2000). The Younger Dryas cold interval as viewed from central Greenland.. Quaternary Science Reviews 19, 213226.CrossRefGoogle Scholar
Anderson, R.S., (1990). Holocene forest development and paleoclimates within the central Sierra Nevada: California.. Journal of Ecology 78, 470489.Google Scholar
Bacon, S.N., Burke, R.M., Pezzopane, S.K., Jayko, A.S., (2006). Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA.. Quaternary Science Reviews 25, 2641282.CrossRefGoogle Scholar
Bailey, R.A., (1989). Geologic map of Long Valley caldera, Mono-Inyo Craters volcanic chain, and vicinity, Mono County, California.. U.S. Geological Survey Miscellaneous Investigations Map I-1933.Google Scholar
Barron, J.A., Heusser, L., Herbert, T., Lyle, M., (2003). High-resolution climatic evolution of coastal northern California during the past 16,000 years.. Paleoceanography 18, 10.1029/2002PA000768.CrossRefGoogle Scholar
Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H., Carvalho, L., Juggins, S., (2001). Diatoms.. Birks, H.J.B., Last, W.M., Smol, J.P. Tracking environmental change using lake sediments Volume 3: terrestrial, algal, and silicious indicators Kluwer Academic Publishers, Dordrecht., pp. 155202.Google Scholar
Benson, L.V., Burdett, J.W., Lund, S.P., Kashgarian, M., Mensing, S., (1997). Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination.. Nature 388, 263265.Google Scholar
Benson, L., Kashgarian, M., Rye, R., Lund, S., Paillet, F., Smoot, J., Kester, C., Mensing, S., Meko, D., Lindström, S., (2002). Holocene multidecadal and multicentennial droughts affecting northern California and Nevada.. Quaternary Science Reviews 21, 659682.Google Scholar
Birks, H.J.B., (1998). Numerical tools in palaeolimnology — progess, potentialities and problems.. Journal of Paleolimnology 20, 307332.Google Scholar
Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D., Lemdahl, G., Possnert, G., Rasmussen, T.L., Wohlfarth, B., Hammer, C., Spurk, M., (1996). Synchronized terrestrial atmospheric deglacial records around the North Atlantic.. Science 274, 11551160.CrossRefGoogle ScholarPubMed
Bloom, A.M., Moser, K.A., Porinchu, D.F., MacDonald, G.M., (2003). Diatom-inference models for surface-water temperature and salinity developed from a 57-lake calibration set from the Sierra Nevada, California, USA.. Journal of Paleolimnology 29, 235255.CrossRefGoogle Scholar
Bradshaw, E.G., Jones, V.J., Birks, H.J.B., Birks, H.H., (2000). Diatom responses to late-glacial and early-Holocene environmental changes at Kråkenes, western Norway.. Journal of Paleolimnology 23, 2134.CrossRefGoogle Scholar
Briggs, R.W., Wesnousky, S.G., Adams, K.D., (2005). Late Pleistocene and late Holocene lake highstands in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA.. Quaternary Research 64, 257263.CrossRefGoogle Scholar
Broecker, W.S., (1997). Thermohaline circulation, the Achilles' Heel of our climate system: will man-made CO2 upset the current balance?.. Science 278, 15821588.Google Scholar
Broecker, W.S., (2003). Does the trigger for abrupt climate change reside in the ocean or in the atmosphere?.. Science 300, 15191522.Google Scholar
Burbank, D.W., (1991). Late Quaternary snowline reconstructions for the southern and central Sierra Nevada, California: reassessment of the “Recess Peak”.. Glaciation. Quaternary Research 36, 294306.Google Scholar
Carlson, A.E., Clark, P.U., Haley, B.A., Klinkhammer, G.P., Simmons, K., Brook, E.J., Meissner, K.J., (2007). Geochemical proxies of North American freshwater routing during the Younger Dryas.. PNAS 104, 65566561.Google Scholar
Clark, D.H., Gillespie, A.R., (1997). Timing and significance of late-glacial and Holocene cirque glaciation in the Sierra Nevada, California.. Quaternary International 38/39, 2138.Google Scholar
Cole, K.L., Arundel, S.T., (2005). Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona.. Geology 33, 713716.CrossRefGoogle Scholar
Davis, O.K., (1999). Pollen analysis of a Holocene — late-Glacial sediment core from Mono Lake, Mono County, California.. Quaternary Research 52, 243249.CrossRefGoogle Scholar
Dodge, F.C.W., (1971). Al2SiO5 in rocks of the Sierra Nevada and Inyo Mountain, California.. The American Mineralogist 56, 14431451.Google Scholar
Faegri, K., Iversen, J., Faegri, K., Kaland, P.E., Krzywinski, K., (1989). Textbook of pollen Analysis.. Fourth Edition John Wiley & Sons, New York. 328 pp.Google Scholar
Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, O.J., Goodyear, A.C., Harris, R.S., Howard, G.A., Kloosterman, J.B., Lechler, P., Mayewski, P.A., Montgomery, J., Poreda, R., Darrah, T., Que Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H., Wolbach, W.S., (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and Younger Dryas cooling.. PNAS 104, 1601616021.Google Scholar
Gillespie, A.R., Zehfuss, P.H., (2004). Glaciations of the Sierra Nevada, California, USA.. Ehlers, J., Gibbar, P.L. Quaternary glaciations — extent and chronology, part II Elsevier B.V., Amsterdam., pp. 5167.Google Scholar
Grigg, L.D., Whitlock, C., (1998). Late-glacial vegetation and climate change in western Oregon.. Quaternary Research 49, 287298.CrossRefGoogle Scholar
Grimm, E., (1987). CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the methods of incremental sum of squares.. Computers & Geoscience 13, 1315.Google Scholar
Heiri, O., Lotter, A.F., Lemcke, G., (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments; reproducibility and comparability of results.. Journal of Paleolimnology 25, 101110.Google Scholar
Hendy, I.L., Kennett, J.P., Roark, E.B., Ingram, B.L., (2002). Apparent synchroneity of submillennial scale climate events between Greenland and Santa Barbara Basin, California from 30–10 ka.. Quaternary Science Reviews 21, 11671184.CrossRefGoogle Scholar
Hildreth, W., (2004). Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems.. Journal of Volcanology and Geothermal Research 136, 169198.Google Scholar
Hill, D.P., Bailey, R.A., Ryall, A.S., (1985). Active tectonic and magmatic processes beneath Long Valley caldera, eastern California: a summary.. Journal of Geophysical Research 90, 11,11111,120.Google Scholar
Huber, N.K., Rinehart, C.D., (1965). Geologic Map, Devils Postpile Quadrangle, California. U.S. Geological Survey Map GQ-437..Google Scholar
Huckleberry, G., Beck, C., Jones, G., Holmes, A., Cannon, M., Livingston, S., Broughton, J.M., (2001). Terminal Pleistocene/Early Holocene environmental change at the Sunshine Locality, north-central Nevada, U.S.A.. Quaternary Research 55, 303312.Google Scholar
James, L.A., Harbor, J., Fabel, D., Dahms, D., Elmore, D., (2002). Late Pleistocene glaciations in the northwestern Sierra Nevada, California.. Quaternary Research 57, 409419.CrossRefGoogle Scholar
Juggins, S., (2003). C2 version 1.3. Software for ecological and palaeoecological analysis and visualization.. University of Newcastle, Newcastle upon Tyne, .Google Scholar
Juggins, S., ter Braak, C.J.F., (1993). CALIBRATE version 0.3: a program for species environment calibration by (weighted averaging) partial least squares regression.. Environmental Change Research Center, University College, London.Google Scholar
Kapp, R.O., Davis, O.K., King, J.E., (2000). How to identify pollen and spores, second edition.. Illustrated by R. C. Hall. American Association of Stratigraphic Palynologists Foundation, Dallas. 279 pp.Google Scholar
Koehler, P.A., Anderson, R.S., (1994). The paleoecology and stratigraphy of Nichols Meadow, Sierra National Forest, California, USA.. Palaeogeography, Palaeoclimatology, Palaeoecology 112, 117.Google Scholar
Licciardi, J.M., (2001). Chronology of latest Pleistocene lake-level fluctuations in the pluvial Lake Chewaucan basin, Oregon, USA.. Journal of Quaternary Science 16, 545553.Google Scholar
Licciardi, J.M., Clark, P.U., Brook, E.J., Elmore, D., Pankaj, S., (2004). Variable responses of western U.S. glaciers during the last deglaciation.. Geology 32, 8184.Google Scholar
Liu, T., Broecker, W.S., Bell, J.W., Mandeville, C.W., (2000). Terminal Pleistocene wet event recorded in rock varnish from Las Vegas Valley, southern Nevada.. Palaeogeography. Palaeoclimatology. Palaeoecology 161, 423433.Google Scholar
Lowell, T.V., Fisher, T.G., Comer, G.C., Hajdas, I., Waterson, N., Glover, K., Loope, H.M., Schaefer, J.M., Rinterknecht, V., Broecker, W., Denton, G., Teller, J.T., (2005). Testing the Lake Agassiz meltwater trigger for the Younger Dryas.. EOS 86, 365373.Google Scholar
MacDonald, G.M., Beukens, R.P., Kieser, W.E., (1991). Radiocarbon dating of limnic sediments: a comparative analysis and discussion.. Ecology 72, 11501155.Google Scholar
MacDonald, G.M., Kremenetski, K.V., Hidalgo, H., (2007). Southern California and the perfect drought: simultaneous prolonged drought in southern California and the Sacramento and Colorado River systems.. Quaternary International 10.1016/j.quaint.2007.06.027.Google Scholar
McManus, J.F., Francois, R., Gherardi, J.-M., Keigwin, L.D., Brown-Leger, S., (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.. Nature 428, 834837.Google Scholar
Melack, J.M., Stoddard, J.L., Ochs, C.A., (1985). Major ion chemistry and sensitivity to acid precipitation of Sierra Nevada lakes.. Water Resources Research 21, 2732.Google Scholar
Mensing, S.A., (2001). Late-glacial and early Holocene vegetation and climate change near Owens Lake, eastern California.. Quaternary Research 55, 5765.Google Scholar
Metz, J.M., Mahood, G.A., (1991). Development of the Long Valley magma chamber recorded in precaldera rhyolite lavas of Glass Mountain, California.. Contributions to Mineralogy and Petrology 106, 379397.Google Scholar
Mikolajewicz, U., Crowley, T.J., Schiller, A., Voss, R., (1997). Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas.. Nature 387, 384387.Google Scholar
Orme, A.J., Orme, A.R., (1993). Late Pleistocene oscillations of Lake Owens, eastern California.. Geological Society of America Abstracts with Programs 25, 129130.Google Scholar
Orme, A.R., Orme, A.J., (2008). Late Pleistocene shorelines of Owens Lake, California, and their hydroclimatic and tectonic implications.. Geological Society of America Special Paper 439, 207225.Google Scholar
Oviatt, C.G., Miller, D.M., McGeehin, J.P., Zachary, C., Mahan, S., (2005). The Younger Dryas phase of Great Salt Lake, Utah, USA.. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 263284.CrossRefGoogle Scholar
Owen, L.A., Finkel, R.C., Minnich, R.A., Perez, A.E., (2003). Extreme southwestern margin of late Quaternary glaciation in North America: timing and controls.. Geology 31, 729732.Google Scholar
Phillips, F.M., Campbell, A.R., Smith, G.I., Bischoff, J.L., (1994). Interstadial climatic cycles: a link between western North America and Greenland?.. Geology 22, 11151118.Google Scholar
Phillips, F.M., Zreda, M.G., Benson, L.V., Plummer, M.A., Elmore, D., Sharma, P., (1996). Chronology for fluctuations in late Pleistocene Sierra Nevada glaciers and lakes.. Science 274, 749751.Google Scholar
Porinchu, D.F., MacDonald, G.M., Bloom, A.M., Moser, K.A., (2002). The modern distribution of chironomid sub-fossils (Insecta: Diptera) in the Sierra Nevada, California: potential for paleoclimatic reconstructions.. Journal of Paleolimnology, 28, 355375.Google Scholar
Porinchu, D.F., MacDonald, G.M., Bloom, A.M., Moser, K.A., (2003). Late Pleistocene and early Holocene climate and limnological changes in the Sierra Nevada, California, USA inferred from midges (Insecta: Diptera: Chironomidae).. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 403422.Google Scholar
Potito, A.P., Porinchu, D.F., MacDonald, G.M., Moser, K.A., (2007). A late Quaternary chironomid inferred temperature record from the Sierra Nevada, California, with connections to northeast Pacific sea surface temperatures.. Quaternary Research 66, 356363.CrossRefGoogle Scholar
Quade, J., Forester, R.M., Pratt, W.L., Carter, C., (1998). Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin.. Quaternary Research 49, 129148.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Herring, C., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C.B., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 Terrestrial radiocarbon age calibration, 0–26 cal kyr BP.. Radiocarbon 46, 10291058.Google Scholar
Rutter, N.W., Weaver, A.J., Rokosh, D., Fanning, A.F., Wright, D.G., (2000). Data–model comparison of the Younger Dryas event.. Canadian Journal of Earth Sciences 37, 811830.Google Scholar
Smith, S.J., Anderson, R.S., (1992). Late Wisconsin paleoecologic record from Swamp Lake, Yosemite National Park, California.. Quaternary Research 38, 91102.Google Scholar
Space, M.L., Ingraham, N.L., Hess, J.W., (1991). The use of stable isotopes in quantifying groundwater discharge to a partially diverted creek.. Journal of Hydrology 129, 175193.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C database and revised CALIB radiocarbon and calibration program.. Radiocarbon 35, 215230.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v.d., , Plicht, J., Spurk, M., (1998). INTCAL98 Radiocarbon age calibration 24,000–0 cal BP.. Radiocarbon 40, 10411083.Google Scholar
Stuvier, M., Reimer, P.J., Reimer, R., (2005). CALIB Radiocarbon Calibration 5.0.2.. http://radiocarbon.pa.qub.ac.uk.Google Scholar
Thompson, R.S., (1992). Late Quaternary environments in Ruby Valley, Nevada.. Quaternary Research 27, 115.Google Scholar
Vacco, D.A., Clark, P.U., Mix, A.C., Cheng, H., Edwards, R.L., (2005). A speleothem record of Younger Dryas cooling from the Klamath Mountains, Oregon.. Quaternary Research 64, 249256.Google Scholar
Walker, I.R., (2001). Midges: Chironomidae and related Diptera.. Smol, J.P., Birks, H.J.B., Last, W.M. Tracking environmental change in lake sediments. Volume 4. zoological indicators Kluwer Academic Publishers, Dordrecht., pp. 4366.Google Scholar
Wolfe, B.B., Edwards, T.W.D., Elgood, R.J., Beuning, K.R.M., (2001). Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications.. Last, W.M., Smol, J.P. Tracking environmental change using lake sediments. Volume 2. physical and chemical techniques Kluwer Academic Publishers, Dordrecht., pp. 373400.Google Scholar
Wolfe, B.B., Falcone, M.D., Clogg-Wright, K.P., Mongeon, C.L., Yi, Y., Brock, B.E., St. Amour, N.A., Mark, W.A., Edwards, T.W.D., (2007). Progress in isotope paleohydrology using lake sediment cellulose.. Journal of Paleolimnology 37, 221231.Google Scholar
Wright, H.E., (1991). Coring tips.. Journal of Paleolimnology 6, 3750.Google Scholar
Zhou, W., Head, M.J., An, Z., De Deckker, P., Liu, Z., Liu, X., Lu, X., Donahue, D., Jull, A.J.T., Beck, J.W., (2001). Terrestrial evidence for a spatial structure of tropical-polar interconnections during the Younger Dryas episode.. Earth and Planetary Science Letters 191, 231239.Google Scholar