Skip to main content Accessibility help

Consensus among multiple trophic levels during high- and low-water stands over the last two millennia in a northwest Ontario lake

  • Moumita Karmakar (a1), Joshua Kurek (a1), Heather Haig (a2) and Brian F. Cumming (a1)


We investigated the modern distribution of fossil midges within a dimictic lake and explored downcore patterns of inferred lake depths over the last 2000 years from previously published proxies. Modern midge distribution within Gall Lake showed a consistent and predictable pattern related to the lake-depth gradient with recognizable assemblages characteristic of shallow-water, mid-depth and profundal environments. Interpretations of downcore changes in midge assemblages, in conjunction with quantitative lake-depth inferences across a priori defined (based on diatom data) ~ 500-yr wet and dry periods, demonstrated that both invertebrate and algal assemblages exhibited similar timing and nature of ecological responses. Midges were quantified by their relative abundance, concentrations and an index of Chaoborus to chironomids, and all showed the greatest differences between the wet and dry periods. During the low lake-level period of the Medieval Climate Anomaly (MCA: AD 900 to 1400), profundal chironomids declined, shallow-water and mid-depth chironomids increased, chironomid-inferred lake level declined and the Chaoborus-to-chironomid index decreased. The coherence between multiple trophic levels provides strong evidence of lower lake levels in Gall Lake during the MCA.


Corresponding author

*Corresponding author. E-mail addresses: (M. Karmakar), (J. Kurek), (H. Haig), (B.F. Cumming).


Hide All
Barley, E.M., Walker, I.R., Kurek, J., Cwynar, L.C., Mathewes, R.W., and Gajewski, K. A northwest North America training set: distribution of freshwater midges in relation to air temperature and lake depth. Journal of Paleolimnology 36, (2006). 295314.
Binford, M.W. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. Journal of Paleolimnology 3, (1990). 253267.
Brodin, Y.W. The postglacial history of Lake Flarken, south Sweeden, interpreted from subfossil insect remain. Internationale Revue der Gesamten Hydrobiologie 71, (1986). 371432.
Brooks, S.J., Langdon, P.G., and Heiri, O. The identification and use of PalaearcticChironomidae larvae larvae in paleoecology. Quaternary Research Association Technical Guide 10, (2007). 1276.
Brundin, L. ZurSystematik der Orthocladiinae (Dipt, Chironomidae). Report of the Institute of Freshwater Research, Drottningholm 37, (1956). 5185.
Clarke, K.R. Non-parametric multivariateanalysis of changes in community structure. Australian Journal of Ecology 18, (1993). 117143.
Cwynar, L.C., Rees, A.B.H., and Pedersen, C.R. Depth distribution of chironomids and an evaluation of site-specific and regional lake-depth inference models: a good model gone bad?. Journal of Paleolimnology 48, (2012). 517533.
Engels, S., and Cwynar, L.C. Changes in fossil chironomid remains along a depth gradient: evidence for common faunal threshold within lakes. Hydrobiologia 665, (2011). 1538.
Engels, S., Cwynar, L.C., Rees, A.B.H., and Shuman, B.N. Chironomid-based water depth reconstruction: an independent evaluation of site-specific and local inference models. Journal of Paleoecology 48, (2012). 693709.
Glew, J.R. A new trigger mechanism for sediment samplers. Journal of Paleolimnology 2, (1989). 241243.
Grimm, E.C. CONISS — a Fortran-77 program for statistigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13, (1987). 1335.
Haig, H., Kingsbury, M.V., Laird, K.R., and Cumming, B.F. A multiproxy assessment of drought over the past two millennia in near-shore sediment cores from a Canadian Boreal Lake. Journal of Paleolimnology 50, (2013). 175190.
Heiri, O., and Lotter, A.F. Effect of low counts on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26, (2001). 343350.
Juggins, S. C2 software for ecological and palaeoecological data analysis and visualization. User Guide Version 1.3. (2003). University of Newcastle, Newcastle, UK.
Juggins, S. Quantitative reconstructions in paleolimnology: new paradigm or sick science?. Quaternary Science Reviews 64, (2013). 2032.
Kingsbury, M.V., Laird, K.R., and Cumming, B.F. Consistent patterns in diatom assemblages and diversity measures across water-depth gradients from eight Boreal lakes from northwestern Ontario (Canada). Freshwater Biology 57, (2012). 11511165.
Kurek, J., and Cwynar, L.C. Effect of within-lake gradients on distribution of fossil chironomids from maar lakes in Western Alaska: implications for environmental reconstructions. Hydrobiologia 623, (2009). 3752.
Kurek, J., and Cwynar, L.C. The potential of site-specific and local chironomid-based inference models for reconstructing past lake-level. Journal of Paleolimnology 42, (2009). 3750.
Kurek, J., Cwynar, L.C., Weeber, R.C., Jefferies, D.S., and Smol, J.P. Ecological distribution of Chaoborus species in small, shallow lakes from the Canadian Boreal Shield ecozone. Hydrobiologia 652, (2010). 207211.
Kurek, J., Weeber, R.C., and Smol, J.P. Environment trumps predation and spatial factors in structuring cladoceran communities from Boreal Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 68, (2011). 14081419.
Kurek, J., Lawlor, L., Cumming, B.F., and Smol, J.P. Long-term oxygen conditions assessed using chironomid assemblages in brook trout lakes from Nova Scotia, Canada. Lake and Reservoir Management 28, (2012). 177188.
Laird, K.R., Kingsbury, M.V., Lewis, C.F.M., and Cumming, B.F. Diatom-inferred depth models in 8 Canadian Boreal lakes: inferred changes in the benthic: planktonic depth boundary and implications for assessment of past drought. Quaternary Science Reviews 30, (2011). 12011217.
Laird, K.R., Haig, H.A., Ma, Susan, Kingsbury, M.V., Brown, T.A., Lewis, M., Oglesby, R., and Cumming, B.F. Expanded spatial extent of the Medieval Climate Anomaly revealed in lake-sediment records across the boreal region in northwest Ontario. Global Change Biology 18, (2012). 28692881.
Larocque, I. How many chironomid head capsules are enough? A statistical approach to determine sample size for paleoclimatic reconstructions. Paleogeography, Paleoclimatology, Paleoecology 172, (2001). 133142.
Luoto, T.P. Hydrological changes in lakes inferred from midge assemblages through use of an intralake calibration set. Ecological Monographs 80, (2010). 303329.
Luoto, T.P. Spatial uniformity in depth optima of midges: evidence from sedimentary archives of shallow Alpine and boreal lakes. Journal of Limnology 71, (2012). 228232.
Ma, S., Laird, K.R., Kingsbury, M.R., Lewis, C.F.M., and Cumming, B.F. Diatom-inferred changes in effective moisture during the late Holocene from nearshore cores in the Southeastern region of the Winnipeg River Drainage Basin (Canada). The Holocene 23, 4 (2013). 568578.
Parker, B.R., Schindler, D.W., Beaty, K.G., Stainton, M.P., and Kasian, S.E.M. Long-term changes in climate, streamflow, nutrient budgets for first-order catchments at the Experimental Lakes Area (Ontario, Canada). Canadian Journal of Fisheries and Aquatic Sciences 66, (2009). 18481863.
Quinlan, R., and Smol, J.P. Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwater Biology 46, (2001). 15291551.
Quinlan, R., and Smol, J.P. Use of subfossil Chaoborus mandibles in models for inferring past hypolimnetic oxygen. Journal of Paleolimnology 44, (2010). 4350.
Quinlan, R., Paterson, J.M., and Smol, J.P. Climate-mediated changes in small lakes inferred from midge assemblages: the influence of thermal regime and lake depth. Journal of Paleolimnology 48, (2012). 297310.
Reimer, P.J.P., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. INTCAL09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.
Schelske, C.L., Peplow, A., Brenner, M., and Spencer, C.N. Low-background gamma counting: applications for 210Pb dating of sediments. Journal of Paleolimnology 10, (1994). 115128.
Schmah, A. Variation among fossil chironomid assemblages in surficial sediments of Bodensee–Untersee (SW-Germany): implications for paleolimnological interpretations. Journal of Paleolimnology 9, (1993). 99108.
St. George, S. Hydrological dynamics in the Winnipeg River basin, Manitoba. Manitoba Science, Technology, Energy and Mines. Manitoba Geological Survey (2006). 226230.
Telford, R.J., and Birks, H.J.B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quaternary Science Reviews 30, (2011). 12721278.
Ter Braak, C.J.F., and Šmilauer, P. CANOCO Reference Manual and User Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4). (1998). Center for Biometry,
Uutala, A.J. Chaoborus (Diptera: Chaoboridae) mandibles — paleolimnological indicators of the historical status of fish population in acid sensitive lakes. Journal of Paleolimnology 4, (1990). 139151.
Velle, G., Telford, R.J., Heiri, O., Kurek, J., and Birks, H.J.B. Testing intra-site transfer functions: an example using chironomids and water depth. Journal of Paleolimnology 48, (2012). 545558.
Walker, I.R. Midges: Chironomidae and related Diptera. Smol, J.P., Birks, H.J.B., and Last, W.M. Tracking Environmental Changes Using Lake Sediments. Zoological Indicators vol. 4, (2001). Kluwer Academic Publisher, Dordrecht. 4366.
Walker, I.R., and MacDonald, G.M. Distribution of Chironomidae (Insecta:Diptera) and other freshwater midges with respect to tree line, Northwest Territories, Canada. Arctic and Alpine Research 3, (1995). 258263.
Wiederholm, T. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomological Scandinavica Supplement 19, (1983). 1457.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed