Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T21:01:42.761Z Has data issue: false hasContentIssue false

Composition and Flux of Holocene Sediments on the Eastern Laptev Sea Shelf, Arctic Siberia

Published online by Cambridge University Press:  20 January 2017

Henning A. Bauch
Affiliation:
GEOMAR Research Center for Marine Geosciences, 24149 Kiel, Germany; and Alfred Wegener Institute for Polar and Marine Research, 27568 Bremerhaven, Germany
Heidemarie Kassens
Affiliation:
GEOMAR Research Center for Marine Geosciences, 24149 Kiel, Germany
Olga D. Naidina
Affiliation:
Institute of the Lithosphere, Russian Academy of Sciences, 109180, Moscow, Russia
Martina Kunz-Pirrung
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, 27568 Bremerhaven, Germany
Jörn Thiede
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, 27568 Bremerhaven, Germany

Abstract

A 467-cm-long core from the inner shelf of the eastern Laptev Sea provides a depositional history since 9400 cal yr. B.P. The history involves temporal changes in the fluvial runoff as well as postglacial sea-level rise and southward retreat of the coastline. Although the core contains marine fossils back to 8900 cal yr B.P., abundant plant debris in a sandy facies low in the core shows that a river influenced the study site until ∼8100 cal yr B.P. As sea level rose and the distance to the coast increased, this riverine influence diminished gradually and the sediment type changed, by 7400 cal yr B.P., from sandy silt to clayey silt. Although total sediment input decreased in a step-like fashion from 7600 to 4000 cal yr B.P., this interval had the highest average sedimentation rates and the greatest fluxes in most sedimentary components. While this maximum probably resulted from middle Holocene climate warming, the low input of sand to the site after 7400 cal yr B.P. probably resulted from further southward retreat of the coastline and river mouth. Since about 4000 cal yr B.P., total sediment flux has remained rather constant in this part of the Laptev Sea shelf due to a gradual stabilization of the depositional regime after completion of the Holocene sea-level rise.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alabyan, A.M., Chalov, R.S., Korotaev, V.N., Sidorchuk, A.Y., Zaitsev, A.A., (1995). Natural and technogenic water and sediment supply to the Laptev Sea.. Reports on Polar Research, 176, 265271.Google Scholar
Are, F.E., (1999). The role of coastal retreat for sedimentation in the Laptev Sea.. Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L., Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Springer-Verlag, New York.287295.Google Scholar
Bareiss, J., Eicken, H., Helbig, A., Martin, T., (1999). Impact of river discharge and regional climatology on the decay of sea ice in the Laptev Sea during spring and early summer.. Arctic, Antarctic, and Alpine Research, 31, 214229.Google Scholar
Bauch, H.A., Kassens, H., Erlenkeuser, H., Grootes, P.M., Thiede, J., (1999). Depositional environment of the Laptev Sea (Arctic Siberia) during the Holocene.. Boreas, 28, 194204.CrossRefGoogle Scholar
Bauch, H.A., Cremer, H., Kunz-Pirrung, M., (2000). Siberian shelf sediments contain clues to paleoclimate forcing.. Eos Transactions, American Geophysical Union, 81, 233238.CrossRefGoogle Scholar
Cauwet, G., Sidorov, I., (1996). The biogeochemistry of Lena River: Organic and nutrients distribution.. Marine Chemistry, 53, 211227.Google Scholar
Degens, E.T., Kempe, S., Richey, J.E., (1991). Summary: Biogeochemistry of major world rivers.. Degens, E.T., Kempe, S., Richey, J.E., Biogeochemistry of Major World Rivers, Wiley, New York.323347.Google Scholar
Ehrmann, W., Thiede, J., (1985). History of the Mesozoic and Cenozoic fluxes in the North Atlantic Ocean.. Contributions to Sedimentology, 15, 1109.Google Scholar
Eicken, H., Reimnitz, E., Alexandrov, V., Martin, T., Kassens, H., Viehoff, T., (1997). Sea-ice processes in the Laptev Sea and their importance for sediment export.. Continental Shelf Research, 17, 205233.CrossRefGoogle Scholar
Fahl, K., Stein, R., (1999). Biomarkers as organic-carbon-source and environmental indicators in the late Quaternary Arctic Ocean.. Marine Chemistry, 63, 293309.Google Scholar
Gordeev, V.V., Martin, J.M., Sidorov, I.S., Sidorova, M.V., (1996). A reassessment of the Eurasian river input of water sediment, major elements, and nutrients to the Arctic.. American Journal of Sciences, 296, 664691.Google Scholar
Grebmeier, J.M., Smith, W.O.J., Conover, R.J., (1995). Biological processes on arctic continental shelves: ice-ocean-biotic interactions.. Smith, W.O.J., Grebmeier, J.H., Arctic Oceanography: Marginal Ice Zones and Continental Shelves: Coastal and Estuarine Studies, American Geophysical Union, Washington.231261.CrossRefGoogle Scholar
Hahne, J., Melles, M., (1999). Climate and vegetation history of the Taymyr Peninsula since Middle Pleistocene time—palynological evidence from lake sediments.. Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L., Land–Ocean Systems in the Siberian Arctic: Dynamics and History, Springer-Verlag, New York.407424.Google Scholar
Hölemann, J.A., Schirmacher, M., Kassens, H., Prange, A., (1999). Geochemistry of surficial and ice-rafted sediments from the Laptev Sea: Estuarine.. Coastal and Shelf Science, 49, 4559.Google Scholar
Holmes, M.L., Creager, J.S., (1974). Holocene history of the Laptev Sea continental shelf.. Herman, Y., Arctic Ocean Sediments, Microfauna, and Climatic Record in the Late Cenocoic Time, Springer-Verlag, New York.211229.Google Scholar
Ivanov, I.I., Piskun, A.A., (1999). Distribution of river water and suspended sediment loads in the deltas of rivers and basins of the Laptev and East Siberian seas.. Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L., Land–Ocean Systems in the Siberian Arctic: Dynamics and History, Springer-Verlag, New York.239250.Google Scholar
Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L., Land–Ocean Systems in the Siberian Arctic: Dynamics and History, (1999). Springer-Verlag, New York.p. 711.Google Scholar
Kempema, E.W., Reimnitz, E., Barnes, P.W., (1989). Sea-ice sediment entrainment and rafting in the Arctic.. Journal of Sedimentary Petrology, 59, 308317.Google Scholar
Kerwin, M., Overpeck, J.T., Webb, R.S., DeVernal, A., Rind, D.H., Healy, R.J., (1999). The role of oceanic forcing in mid-Holocene northern hemisphere climatic change.. Paleoceanography, 14, 200210.CrossRefGoogle Scholar
Khotinsky, N.A., (1984). Holocene vegetation history.. Velichko, A.A., Late Quaternary Environments of the Soviet Union, Longman, London.179200.Google Scholar
Kleiber, H.P., Niessen, F., (1999). Late Pleistocene paleoriver channels on the Laptev Sea Shelf—implications from sub-bottom profiling.. Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L., Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Springer-Verlag, New York.635656.Google Scholar
Kuptsov, V.M., Lisitzin, A.P., (1996). Radiocarbon of Quaternary along shore and bottom deposits of the Lena and the Laptev Sea sediments.. Marine Chemistry, 53, 301311.CrossRefGoogle Scholar
Laing, T.E., Rühland, K.M., Smol, J.P., (1999). Past environmental and climatic changes related to tree-line shifts inferred from fossil diatoms from a lake near the Lena River Delta, Siberia.. The Holocene, 9, 547557.CrossRefGoogle Scholar
Lindemann, F., (1995). Sonographische und sedimentologische Untersuchungen in der Laptevsee, sibirische Arktis.. Kiel University, p. 75.Google Scholar
Macdonald, R.W., Solomon, S.M., Cranston, R.E., Welch, H.E., Yunker, M.B., Gobeil, C., (1998). A sediment and organic carbon budget for the Canadian Beaufort Shelf.. Marine Geology, 144, 255273.Google Scholar
MacDonald, G.M., Velichko, A.A., Kremenetski, C.V., Borisova, O.K., Goleva, A.A., Andreev, A.A., Cwynar, L.C., Riding, R.T., Forman, S.L., Edwards, T.W.D., Aravena, R., Hammarlund, D., Szeicz, J.M., Gataullin, V., (2000). Holocene treeline history and climate change across northern Eurasia.. Quaternary Research, 53, 302311.CrossRefGoogle Scholar
Monserud, R.A., Tchebakova, N.M., Denissenko, O.V., (1998). Reconstruction of the mid-Holocene paleoclimate of Siberia using a bioclimatic vegetation model.. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 1536.Google Scholar
Mueller-Lupp, T., Bauch, H.A., Erlenkeuser, H., Hefter, J., Kassens, H., Thiede, J., (2000). Changes in the deposition of terrestrial organic matter on the Laptev Sea shelf during the Holocene: evidence from stable carbon isotopes.. International Journal of Earth Sciences, 89, 563568.Google Scholar
Naidina, O.D., Bauch, H.A., (1999). Distribution of pollen and spores in surface sediments of the Laptev Sea.. Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L., Land–Ocean Systems in the Siberian Arctic: Dynamics and History, Springer-Verlag, New York.577586.Google Scholar
Pavlov, V.K., Timokhov, L.A., Baskakov, G.A., Kulakov, M.Y., Kurazov, V.K., Pavlov, P.V., Pivovarov, S.V., Stanovoy, V.V., (1996). Hydrometeorological regime of the Kara, Laptev and East Siberian seas. University of Washington, Seattle.. Technical Memorandum APL-UW, 1-96, 1179.Google Scholar
Pfirman, S.L., Colony, R., Nürnberg, D., Eicken, H., Rigor, I., (1997). Reconstructing the origin and trajectory of drifting Arctic seas ice.. Journal of Geophysical Research, 102, 12,57512,586.Google Scholar
Pivovarov, S.V., Höleman, J.A., Kassens, H., Antonow, M., Dmitrenko, I., (1999). Dissolved oxygen, silicon, phosphorous and suspended matter concentrations during the spring breakup of Lena River.. Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L., Land–Ocean Systems in the Siberian Arctic: Dynamics and History, Springer-Verlag, New York.251264.Google Scholar
Rachold, V., (1999). Major trace and rare earth element geochemistry of suspended particulate material in East Siberian rivers.. Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L., Land–Ocean Systems in the Siberian Arctic: Dynamics and History, Springer-Verlag, New York.199222.CrossRefGoogle Scholar
Rachold, V., Hubberten, H.-W., (1999). Carbon isotope composition of particulate organic material in east Siberian rivers.. Kassens, H., Bauch, H.A., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., Timokhov, L., Land–Ocean Systems in the Siberian Arctic: Dynamics and History, Springer-Verlag, New York.223238.Google Scholar
Reimnitz, E., Graves, S.M., Bames, P.W., U.S. Geological Survey Report to Map 1-1182, (1988). 122.Google Scholar
Sirenko, B.I., Petryashov, V.V., Rachor, E., Hinz K., , Reports on Polar Research, 176, (1995). 211221.Google Scholar
Smith, L.C., Alsdorf, D.E., (1998). Control on sediment and organic carbon delivery to the Arctic Ocean revealed with space-borne synthetic aperture radar: Ob River, Siberia.. Geology, 26, 395398.Google Scholar
Stein, R., Fahl, K., (2000). Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean): Sources, pathways, and sinks.. Geo-Marine Letters, 20, 2736.Google Scholar
Stockmarr, J., (1971). Tablets with spores used in absolute pollen analysis.. Pollen and Spores, 13, 616621.Google Scholar
Stuiver, M., Pearson, G.W., Braziunas, T., (1986). Radiocarbon age calibration of marine samples back to 9000 cal yr BP.. Radiocarbon, 28, 9801021.Google Scholar
Stuiver, M., Braziunas, T.F., (1993). Sun, ocean, climate and atmospheric 14CO2; an evaluation of causal and spectral relationships.. The Holocene, 3, 289305.Google Scholar
Stuiver, M., Reimer, P.J., Braziunas, T.F., (1998). High-precision radiocarbon age calibration for terrestrial and marine samples.. Radiocarbon, 40, 11271151.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Cromer, B., McCormic, G., van der Plicht, J., Spurk, M., (1998). INTCAL 98 radiocarbon age calibration, 24,000-0 cal BP.. Radiocarbon, 40, 10411083.Google Scholar
Svendsen, J.I., Astakhov, V.I., Bolshiyanov, D.Y., Demidov, I., Dowdeswell, J.A., Gataullin, V., Hjort, C., Hubberten, H.W., Larsen, E., Mangerud, J., Melles, M., Möller, P., Saarnistoo, M., Siegert, M.J., (1999). Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian.. Boreas, 28, 234242.CrossRefGoogle Scholar
Telang, S.A., Pocklington, R., Naidu, A.S., Romankevich, E.A., Gitelson, I.I., Gladyshev, M.I., (1991). Carbon and mineral transport in major North American, Russian Arctic, and Siberian rivers: The St. Lawrence, the Mackenzie, the Yukon, the Arctic Alaskan rivers, the Arctic Basin rivers in the Soviet Union, and the Yensei.. Degens, E.T., Kempe, S., Richey, J.E., Biogeochemistry of Major World Rivers, Wiley, New York.75104.Google Scholar
van Andel, T.H., Health, G.R., Moore, T.C., (1975). Cenozoic history and paleoceanography of the central Equatorial Pacific.. Geological Society of America Memoir, 143, 1134.CrossRefGoogle Scholar