Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T15:26:52.872Z Has data issue: false hasContentIssue false

A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica

Published online by Cambridge University Press:  20 January 2017

Bérangère Leys*
Affiliation:
Paleoenvironments and Chronoecology (PALECO EPHE) Ecole Pratique des Hautes Études, Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France Centre for Bio-Archaeology and Ecology (UMR5059 CNRS), Université Montpellier 2, Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France
Christopher Carcaillet
Affiliation:
Paleoenvironments and Chronoecology (PALECO EPHE) Ecole Pratique des Hautes Études, Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France Centre for Bio-Archaeology and Ecology (UMR5059 CNRS), Université Montpellier 2, Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France
Laurent Dezileau
Affiliation:
Geosciences Montpellier (UMR5243 CNRS), Université Montpellier 2, place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
Adam A. Ali
Affiliation:
Centre for Bio-Archaeology and Ecology (UMR5059 CNRS), Université Montpellier 2, Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France Chaire industrielle CRSNG-UQAT-UQAM en aménagement forestier durable, Université du Québec en Abitibi-Témiscamingue, 445 Boulevard de l'Université, Rouyn-Noranda, QC, Canada J9X 5E4
Richard H.W. Bradshaw
Affiliation:
School of Environmental Sciences, Roxby Building, University of Liverpool, Liverpool L69 7ZT, United Kingdom
*
*Corresponding author at: Paleoenvironments and Chronoecology (PALECO EPHE) Ecole Pratique des Hautes Études, Institut de Botanique, 163 rue Broussonet, F-34090 Montpellier, France. E-mail address:berangere.leys@univ-montp2.fr (B. Leys).

Abstract

Fire-history reconstructions inferred from sedimentary charcoal records are based on measuring sieved charcoal fragment area, estimating fragment volume, or counting fragments. Similar fire histories are reconstructed from these three approaches for boreal lake sediment cores, using locally defined thresholds. Here, we test the same approach for a montane Mediterranean lake in which taphonomical processes might differ from boreal lakes through fragmentation of charcoal particles. The Mediterranean charcoal series are characterized by highly variable charcoal accumulation rates. Results there indicate that the three proxies do not provide comparable fire histories. The differences are attributable to charcoal fragmentation. This could be linked to fire type (crown or surface fires) or taphonomical processes, including charcoal transportation in the catchment area or in the sediment. The lack of correlation between the concentration of charcoal and of mineral matter suggests that fragmentation is not linked to erosion. Reconstructions based on charcoal area are more robust and stable than those based on fragment counts. Area-based reconstructions should therefore be used instead of the particle-counting method when fragmentation may influence the fragment abundance.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, A.A., Higuera, P.E., Bergeron, Y., and Carcaillet, C. Comparing fire-history interpretations based on area, number and estimated volume of macroscopic charcoal in lake sediments. Quaternary Research 72, (2009). 462468.CrossRefGoogle Scholar
Alley, R.B., and Agustsdottir, A.M. The 8 k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, (2005). 11231149.CrossRefGoogle Scholar
Andreae, M.O., and Merlet, P. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, (2001). 955966.CrossRefGoogle Scholar
Appleby, P.G., and Oldfield, F. Application of 210Pb to sedimentation studies. Ivanovich, M., and Harmon, R.S. Uranium Series Disequilibrium. (1992). Clarendon Press, Oxford. 731778.Google Scholar
Bond, W., Woodward, F., and Midgley, G. The global distribution of ecosystems in a world without fire. The New Phytologist 165, (2005). 525538.CrossRefGoogle Scholar
Bradbury, J.P. Charcoal deposition and redeposition in Elk Lake, Minnesota, USA. The Holocene 6, (1996). 339344.CrossRefGoogle Scholar
Carcaillet, C., Bouvier, M., Fréchette, B., Larouche, A.C., and Richard, P.J.H. Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. The Holocene 11, (2001). 467476.CrossRefGoogle Scholar
Carcaillet, C., Bergeron, Y., Richard, P.J.H., Frechette, B., Gauthier, S., and Prairie, Y.T. Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime?. Journal of Ecology 89, (2001). 930946.CrossRefGoogle Scholar
Carcaillet, C., Richard, P.J.H., Asnong, H., Capece, L., and Bergeron, Y. Fire and soil erosion history in east Canadian boreal and temperate forests. Quaternary Science Reviews 25, (2006). 14891500.CrossRefGoogle Scholar
Carcaillet, C., Perroux, A.S., Genries, A., and Perrette, Y. Sedimentary charcoal pattern in a karstic underground lake (Vercors massif, Alps, France): implications for paleo-fire history. The Holocene 17, (2007). 845850.CrossRefGoogle Scholar
Carcaillet, C., Hôrnberg, G., and Zackrisson, O. Woody vegetation, fuel and fire track the melting of the Scandinavian ice-sheet before 9500 cal yr BP. Quaternary Research (2012). http://dx.doi.org/10.1016/j.yqres.2012.08.001CrossRefGoogle Scholar
Clark, J.S. Stratigraphic charcoal analysis on petrographic thin sections: application to fire history in northwestern Minnesota. Quaternary Research 30, (1988). 8191.CrossRefGoogle Scholar
Clark, J.S. Fire and climate change during the last 750 a in northwestern Minnesota. Ecological Monographs 60, (1990). 135159.CrossRefGoogle Scholar
Clark, J.S., and Hussey, T.C. Estimating the mass flux of charcoal from sedimentary records: effects of particle size, morphology, and orientation. The Holocene 6, (1996). 129144.CrossRefGoogle Scholar
Clark, J.S., and Royall, P.D. Particle-size evidence for source areas of charcoal accumulation in late Holocene sediments of eastern North American lakes. Quaternary Research 43, (1995). 8089.CrossRefGoogle Scholar
Clark, J.S., Lynch, J., Stocks, B.J., and Goldammer, J.G. Relationships between charcoal particles in air and sediments in west-central Siberia. The Holocene 8, (1998). 1929.CrossRefGoogle Scholar
Colombaroli, D., Marchetto, A., and Tinner, W. Long term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). Journal of Ecology 95, (2007). 755770.CrossRefGoogle Scholar
Colombaroli, D., Vannière, B., Emmanuel, C., Magny, M., and Tinner, W. Fire-vegetation interactions during the Mesolithic-Neolithic transition at Lago dell'Accesa, Tuscany, Italy. The Holocene 18, (2008). 679692.CrossRefGoogle Scholar
Connor, S.E., Araùjo, J., van der Knaap, W.O., and van Leeuwen, J.F.N. A long-term perspective on biomass burning in the Serra da Estrela, Portugal. Quaternary Science Reviews 55, (2012). 114124.CrossRefGoogle Scholar
Costa, L.J. Nouvelles données sur le Mésolithique des îles Tyrrhéniennes (Corse et Sardaigne). Gallia Préhistoire 46, 1 (2004). 211230.CrossRefGoogle Scholar
Curt, T., Schaffhauser, A., Borgniet, L., Dumas, C., Estève, R., Ganteaume, A., Jappiot, M., Martin, W., N'Diaye, A., and Poilvet, B. Litter flammability in oak woodlands and shrublands of southeastern France. Forest Ecology and Management 261, (2011). 22142222.CrossRefGoogle Scholar
Gamisans, J., and Jeanmonod, D. Catalogue des plantes vasculaires de la Corse, Complements au Prodrome de la flore corse. Jeanmonod, D., and Burdet, H.M. (1993). Conservatoire et jardin botanique, Genève. 1391.Google Scholar
Gavin, D., Hu, F., Lertzman, K., and Corbett, P. Weak climatic control of stand-scale fire history during the late Holocene. Ecology 87, (2006). 17221732.CrossRefGoogle ScholarPubMed
Goldberg, E. Geochronology with lead-210 radioactive dating. (1963). International Atomic Energy Agency, Vienna. 121131.Google Scholar
Hallett, D.J., and Anderson, R.S. Paleofire reconstruction for high-elevation forests in the Sierra Nevada, California, with implications for wildfire synchrony and climate variability in the late Holocene. Quaternary Research 73, 2 (2010). 180190.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., and Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, (2001). 101110.CrossRefGoogle Scholar
Higuera, P.E., Sprugel, D.G., and Brubaker, L.B. Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire. The Holocene 15, (2005). 238251.CrossRefGoogle Scholar
Higuera, P.E., Peters, M.E., Brubaker, L.B., and Gavin, D.G. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quaternary Science Reviews 26, (2007). 17901809.CrossRefGoogle Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Brown, T.A., Kennedy, A.T., and Hu, F.S. Frequent fires in ancient shrub tundra: implications of paleorecords for Arctic environmental change. PLoS One 3, (2008). e0001744 CrossRefGoogle ScholarPubMed
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., and Brown, T.A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 79, (2009). 201219.CrossRefGoogle Scholar
Higuera, P.E., Gavin, D.G., Bartlein, P.J., and Hallett, D.J. Peak detection in sediment-charcoal records: impacts of alternative data analysis methods on fire-history interpretations. International Journal of Wildland Fire 19, 8 (2011). 9961014.CrossRefGoogle Scholar
Jackson, S.T., and Lyford, M.E. Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions. The Botanical Review 65, (1999). 3975.CrossRefGoogle Scholar
Jacobson, G., and Bradshaw, R.H.W. The selection of sites for paleovegetational studies. Quaternary Research 16, (1981). 8096.CrossRefGoogle Scholar
Keeley, J.E., Pausas, J.G., Rundel, P.W., Bond, W.J., and Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16, (2011). 406411.CrossRefGoogle ScholarPubMed
Kelly, R.F., Higuera, P.E., Barrett, C.M., and Hu, F. A signal-to-noise index to quantify the potential for peak detection in sediment-charcoal records. Quaternary Research 75, 1 (2011). 1117.CrossRefGoogle Scholar
Legendre, P., Legendre, L., (1998). Numerical ecology. 2nd English edition. (eds. Elsevier Science) BV, Amsterdam, pp. 853.Google Scholar
Lynch, J.A., Clark, J.S., and Stocks, B.J. Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests. Canadian Journal of Forest Research 34, (2004). 16421656.CrossRefGoogle Scholar
Mouillot, F., Rambal, S., and Joffre, R. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Global Change Biology 8, (2002). 423437.CrossRefGoogle Scholar
Pausas, J.G. Mediterranean vegetation dynamics: modelling problems and functional types. Plant Ecology 140, (1999). 2739.CrossRefGoogle Scholar
Payette, S., Morneau, C., Sirois, L., and Desponts, M. Recent fire history of the northern Quebec biomes. Ecology 70, (1989). 656673.CrossRefGoogle Scholar
Pitkänen, A., Lehtonen, H., and Huttunen, P. Comparison of sedimentary microscopic charcoal particle records in a small lake with dendrochronological data: evidence for the local origin of microscopic charcoal produced by forest fires of low intensity in eastern Finland. The Holocene 9, (1999). 559567.CrossRefGoogle Scholar
Reille, M., Gamisans, J., deBeaulieu, J.L., and Andrieu, V. The late-glacial at Lac de Creno (Corsica, France): a key site in the western Mediterranean Basin. The New Phytologist 135, (1997). 547559.CrossRefGoogle Scholar
Reille, M., Gamisans, J., Andrieu-Ponel, V., and de Beaulieu, J.L. The Holocene at Lac de Creno, Corsica, France: a key site for the whole island. The New Phytologist 141, (1999). 291307.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Buck, C.E., Burr, G.S., Edwards, R.L., Friedich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Ramsey, C., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Rius, D., Vannière, B., and Galop, D. Fire frequency and landscape management in the northwestern Pyrenean piedmont, France, since the early Neolithic (8000 cal. BP). The Holocene 19, (2009). 847859.CrossRefGoogle Scholar
Rius, D., Vannière, B., and Galop, D. Holocene history of fire, vegetation and land use from the central Pyrenees (France). Quaternary Research 77, 1 (2012). 5464.CrossRefGoogle Scholar
Robbins, J.A., and Edgington, D.N. Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochimica et Cosmochimica Acta 39, 3 (1975). 285304.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Telford, R.J., Heegaard, E., and Birks, H.J.B. The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14, (2004). 296 CrossRefGoogle Scholar
Trabaud, L. Inflammabilité et combustibilité des principales espèces des garrigues de la région méditerranéenne. Œcologia Plantarum 11, (1976). 117136.Google Scholar
Turner, R., Roberts, N., and Jones, M.D. Climatic pacing of Mediterranean fire histories from lake sedimentary microcharcoal. Global and Planetary Change 63, 4 (2008). 317324.CrossRefGoogle Scholar
Turner, R., Roberts, N., Eastwood, W.J., Jenkins, E., and Rosen, A. Fire, climate and the origins of agriculture: micro-charcoal records of biomass burning during the last glacial–interglacial transition in Southwest Asia. Journal of Quaternary Science 25, (2010). 371386.CrossRefGoogle Scholar
Vanniere, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., and Magny, M. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell'Accesa (Tuscany, Italy). Quaternary Science Reviews 27, (2008). 11811196.CrossRefGoogle Scholar
Weng, C.Y. An improved method for quantifying sedimentary charcoal via a volume proxy. The Holocene 15, (2005). 298301.CrossRefGoogle Scholar
Whitlock, C., and Millspaugh, S.H. Testing the assumptions of fire history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA. The Holocene 6, (1996). 715.CrossRefGoogle Scholar
Supplementary material: PDF

Leys et al. Supplementary Material

Supplementary Material

Download Leys et al. Supplementary Material(PDF)
PDF 3.7 MB