Skip to main content Accessibility help

Clay mineral variations in Holocene terrestrial sediments from the Indus Basin

  • Anwar Alizai (a1), Stephen Hillier (a2), Peter D. Clift (a1), Liviu Giosan (a3), Andrew Hurst (a1), Sam VanLaningham (a4) and Mark Macklin (a5)...


We employed X-ray diffraction methods to quantify clay mineral assemblages in the Indus Delta and flood plains since ~ 14 ka, spanning a period of strong climatic change. Assemblages are dominated by smectite and illite, with minor chlorite and kaolinite. Delta sediments integrate clays from across the basin and show increasing smectite input between 13 and 7.5 ka, indicating stronger chemical weathering as the summer monsoon intensified. Changes in clay mineralogy postdate changes in climate by 5–3 ka, reflecting the time needed for new clay minerals to form and be transported to the delta. Samples from the flood plains in Punjab show evidence for increased chemical weathering towards the top of the sections (6–≪ 4 ka), counter to the trend in the delta, at a time of monsoon weakening. Clay mineral assemblages within sandy flood-plain sediment have higher smectite/(illite + chlorite) values than interbedded mudstones, suggestive of either stronger weathering or more sediment reworking since the Mid Holocene. We show that marine records are not always good proxies for weathering across the entire flood plain. Nonetheless, the delta record likely represents the most reliable record of basin-wide weathering response to climate change.


Corresponding author

*Corresponding author. E-mail address: (A. Alizai).


Hide All
Adatte, T., Keller, G., Stinnesbeck, W., (2002). Late Cretaceous to early Paleocene climate and sea-level fluctuations: the Tunisian record. Palaeogeography, Palaeoclimatology, Palaeoecology. 178, 165196.
Agrawal, D., Datta, P., Hussain, Z., Krishnamurthy, R., Misra, V., Rajaguru, S., Thomas, P., (1980). Palaeoclimate, stratigraphy and prehistory in north and west Rajasthan. Journal of Earth System Science. 89, 1 5166.
Alizai, A., Carter, A., Clift, P.D., VanLaningham, S., Williams, J.C., Kumar, R., (2011a). Sediment provenance, reworking and transport processes in the Indus River by U–Pb dating of detrital zircon grains. Global and Planetary Change. 76, 3355. .
Alizai, A., Clift, P.D., Giosan, L., (2011b). Pb isotopic variability in the Modern and Holocene Indus River System measured by ion microprobe in detrital K-feldspar grains. Geochimica et Cosmochimica Acta. 75, 47714795. .
Birkeland, P.W., (1984). Soils and Geomorphology. Oxford University Press, Oxford, 310 pp.
Biscaye, P.E., (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin. 76, 803832.
Bockheim, J.G., (1982). Properties of a chronosequence of ultra-xerous soils in the Trans-Antarctic mountains. Geoderma. 28, 239255.
Bookhagen, B., Burbank, D.W., (2006). Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophysical Research Letters. 33, L08405 .
Bookhagen, B., Fleitmann, D., Nishiizumi, K., Strecker, M.R., Thiede, R.C., (2006). Holocene monsoonal dynamics and fluvial terrace formation in the northwest Himalaya, India. Geology (Boulder). 34, 601604.
Boulay, S., Colin, C., Trentesaux, A., Clain, S., Liu, Z., Lauer-Leredde, C., (2007). Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea. Quaternary Research. 68, 162172.
Campbell, I.B., Claridge, G., (1982). The influence of moisture on the development of soils of the cold deserts of Antarctica. Geoderma. 28, 221228.
Chamley, H., (1989). Clay Sedimentology. Springer-Verlag, Berlin, 267 pp.
Clift, P., Giosan, L., Blusztajn, J., (2008). Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology. 36, 1 7982. .
Clift, P.D., Giosan, L., Henstock, T., Tabrez, A.R., VanLaningham, S., Alizai, A., Limmer, D., Danish, M., (2009). Sediment buffering and transport in the Holocene Indus River system. American Geophysical Union Eos Trans. AGU, Fall Meet. Suppl., Abstract, T35B-1950.
Clift, P.D., Carter, A., Giosan, L., Durcan, J., Tabrez, A.R., Alizai, A., VanLaningham, S., Duller, G.A.T., Macklin, M.G., Fuller, D.Q., Danish, M., (2012). U-Pb zircon dating evidence for a Pleistocene Sarasvati River and Capture of the Yamuna River. Geology .
Colin, C., Siani, G., Sicre, M.-A., Liu, Z., (2010). Impact of the East Asian monsoon rainfall changes on the erosion of the Mekong River basin over the past 25,000 yr. Marine Geology. 271, 1–2 8492. .
Enzel, Y., Ely, L.L., Mishra, S., (1999). High-resolution Holocene environmental changes in the Thar Desert, northwestern India. Science. 284, 125128.
Fagel, N., Hillaire-Marcel, C., Vernal, A.d., (2007). Marine clay minerals, deep circulation and climate. Paleoceanography of the Late Cenozoic. Volume 1, Methods, Elsevier, Amsterdam, 139184.
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., (2003). Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science. 300, 5626 17371739.
Ghose, B., Kar, A., Husain, Z., (1979). The lost courses of the Saraswati River in the Great Indian Desert; new evidence from Landsat imagery. The Geographical Journal. 145, 3 446451.
Giosan, L., Clift, P.D., Blusztajn, J., Tabrez, A., Constantinescu, S., Filip, F., (2006). On the control of climate- and human-modulated fluvial sediment delivery on river delta development: the Indus. Eos, Transactions, American Geophysical Union. 87, 52OS14A-04.
Griffin, J., Windom, H., Goldberg, E., (1968). The Distribution of Clay Minerals in the World Ocean. Elsevier, Amsterdam.
Gupta, A.K., Anderson, D.M., Overpeck, J.T., (2003). Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature. 421, 354356.
Hamann, Y., Ehrmann, W., Schmiedl, G., Kuhnt, T., (2009). Modern and late Quaternary clay mineral distribution in the area of the SE Mediterranean Sea. Quaternary Research. 71, 3 453464.
Hillier, S., (1995). Erosion, sedimentation, and sedimentary origin of clays. Velde, B., Clays and the environment, Springer Verlag, Berlin, 162219.
Hillier, S., (2003). Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). Worden, R.H., Morad, S., Clay Mineral Cements in Sandstones. Special Publication, International Association of Sedimentologists.
Jacobs, M., (1970). Clay mineral investigations of Cretaceous and Quaternary deep sea sediments of the North American Basin. Journal of Sedimentary Research. 40, 3 864868.
Jeong, G.Y., Hillier, S., Kemp, R.A., (2011). Changes in mineralogy of loess–paleosol sections across the Chinese Loess Plateau. Quaternary Research. 75, 1 245255.
Lamy, F., Hebbeln, D., Wefer, G., (1998). Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5°S) and palaeoclimatic implications. Palaeogeography Palaeoclimatology Palaeoecology. 141, 233251.
Moore, D., Reynolds, R., (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 332 pp.
Morgan, R., (1973). The influence of scale in climatic geomorphology: a case study of drainage density in West Malaysia. Geografiska Annaler. Series A. Physical Geography. 55, 107115.
Overpeck, J., Anderson, D., Trumbore, S., Prell, W., (1996). The southwest Indian Monsoon over the last 18000 years. Climate Dynamics. 12, 213225.
Pandarinath, K., (2009). Clay minerals in SW Indian continental shelf sediment cores as indicators of provenance and palaeomonsoonal conditions: a statistical approach. International Geology Review. 51, 2 145165.
Prell, W.L., Curry, W.B., (1981). Faunal and isotopic indices of monsoonal upwelling: western Arabian Sea. Oceanologica Acta. 4, 9198.
Rao, D.R., Sharma, K.K., (1995). Petrological and geochemical constraints on the petrogenesis of the Jaspa granitic pluton, Lahual region, NW Himalaya. Journal of the Geological Society of India. 45, 6 629642.
Rateev, M., Gorbunova, Z., (1969). The distribution of clay minerals in the oceans. Sedimentology. 13, 1–2 2143.
Singer, A., (1984). The paleoclimatic interpretation of clay minerals in sediments—a review. Earth-Science Reviews. 21, 251293.
Srodon, J., Eberl, D., (1984). Illite. Reviews in Mineralogy and Geochemistry. 13, 1 495544.
Stern, L.A., Chamberlain, C.P., Reynolds, R.C., Johnson, G.D., (1997). Oxygen isotope evidence of climate change from pedogenic clay minerals in the Himalayan molasse. Geochimica et Cosmochimica Acta. 61, 4 731744.
Stuiver, M., Grootes, P.M., (2000). GISP2 oxygen isotope ratios. Quaternary Research (New York). 53, 3 277284.
Thamban, M., Rao, V.P., (2005). Clay minerals as palaeomonsoon proxies: evaluation and relevance to the late Quaternary record from SE Arabian Sea. Rajan, S., Pandey, P.C., Antarctic Geoscience: Ocean-atmosphere Interaction and Paleoclimatology, National Centre for Antarctic & Ocean Research, Goa, India, 198215.
Thamban, M., Rao, V.P., Schneider, R.R., (2002). Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India. Marine Geology. 186, 527539.
Thiry, M., (2000). Palaeoclimatic interpretation of clay minerals in marine deposits; an outlook from the continental origin. Earth-Science Reviews. 49, 1–4 201221.
Törnqvist, T.E., Bick, S.J., Gonzalez, J.L., van der Borg, K., de Jong, A.F.M., (2004). Tracking the sea-level signature of the 8.2 ka cooling event: new constraints from the Mississippi Delta. Geophysical Research Letters. 31, L23309 .
Valdiya, K.S., (2002). Saraswati: The River that Disappeared. 1st. University Press, India, Limited, Hyderabad, India, 116 pp.
Wan, S., Li, A., Clift, P.D., Stuut, J.-B.W., (2007). Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology. 254, 3–4 561582.
Wilson, M.J., (1999). The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals. 34, 1 725.
Wünnemann, B., Demske, D., Tarasov, P., (2010). Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quaternary Science Reviews. 29, 11381155.
Zimmermann, H.B., (1977). Clay–mineral stratigraphy and distribution in the South Atlantic ocean. Initial Reports of the Deep Sea Drilling Project. 39, 395405.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Alizai et al. Supplementary Material
Supplementary Material

 PDF (2.1 MB)
2.1 MB

Clay mineral variations in Holocene terrestrial sediments from the Indus Basin

  • Anwar Alizai (a1), Stephen Hillier (a2), Peter D. Clift (a1), Liviu Giosan (a3), Andrew Hurst (a1), Sam VanLaningham (a4) and Mark Macklin (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.