Skip to main content Accessibility help

Chronology and glass chemistry of tephra and cryptotephra horizons from lake sediments in northern Alaska, USA

  • Alistair J. Monteath (a1), Maarten van Hardenbroek (a2), Lauren J. Davies (a3), Duane G. Froese (a3), Peter G. Langdon (a1), Xiaomei Xu (a4) and Mary E. Edwards (a1) (a5)...


Holocene tephrostratigraphy in Alaska provides independent chronology and stratigraphic correlation in a region where reworked old (Holocene) organic carbon can significantly distort radiocarbon chronologies. Here, we present new glass chemistry and chronology for Holocene tephras preserved in three Alaskan lakes: one in the eastern interior and two in the southern Brooks Range. Tephra beds in the eastern interior lake-sediment core are correlated with the White River Ash and the Hayes tephra set H (~4200–3700 cal yr BP), and an additional discrete tephra bed is likely from the Aleutian arc/Alaska Peninsula. Cryptotephras (nonvisible tephras) found in the Brooks Range include the informally named “Ruppert tephra” (~2700–2300 cal yr BP) and the Aniakchak caldera-forming event II (CFE II) tephra (~3600 cal yr BP). A third underlying Brooks Range cryptotephra is chemically indistinguishable from the Aniakchak CFE II tephra (4070–3760 cal yr BP) and is likely to be from an earlier eruption of the Aniakchak volcano.


Corresponding author

*Corresponding author at: Geography and Environment, Room 1067, Shackleton Building 44, University of Southampton, Southampton SO17 1BJ, United Kingdom. E-mail address: (A.J. Monteath).


Hide All
Abbott, M.B., Stafford, T.W., 1996. Radiocarbon geochemistry of modern and ancient arctic lake systems, Baffin Island, Canada. Quaternary Research 45, 300311.
Anderson, R., Nuhfer, E., Dean, W.E., 1984. Sinking of volcanic ash in uncompacted sediment in Williams Lake, Washington. Science 225, 505508.
Begét, J., Mason, O., Anderson, P., 1992. Age, extent and climatic significance of the c. 3400 BP Aniakchak tephra, western Alaska, USA. Holocene 2, 5156.
Beierle, B., Bond, J., 2002. Density-induced settling of tephra through organic lake sediments. Journal of Paleolimnology 28, 433440.
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.
Blockley, S.P.E., Pyne-O’Donnell, S.D.F., Lowe, J.J., Matthews, I.P., Stone, A., Pollard, A.M., Turney, C.S.M., Molyneux, E.G., 2005. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. Quaternary Science Reviews 24, 19521960.
Brubaker, L.B., Anderson, P.A., Edwards, M.E., Lozhkin, A.V., 2005. Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. Journal of Biogeography 32, 833848.
Brubaker, L.B., Garfinkel, H.L., Edwards, M.E., 1983. A late Wisconsin and Holocene vegetation history from the central Brooks Range: implications for Alaskan palaeoecology. Quaternary Research 20, 194214.
Carlson, L.J., Finney, B.P., 2004. A 13000-year history of vegetation and environmental change at Jan Lake, east-central Alaska. Holocene 14, 818827.
Cooper, A., Turney, C., Hughen, K.A., Brook, B.W., McDonald, H.G., Bradshaw, C.J.A., 2015. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602606.
Coulter, S.E., Pilcher, J.R., Plunkett, G., Baillie, M., Hall, V.A., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Johnsen, S.J., 2012. Holocene tephras highlight complexity of volcanic signals in Greenland ice cores. Journal of Geophysical Research: Atmospheres 117, D21303.
Davies, L.J., Jensen, B.J.L., Froese, D.G., Wallace, K.L., 2016. Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years. Quaternary Science Reviews 146, 2853.
Davies, S.M., Elmquist, M., Bergman, J., Wohlfarth, B., Hammarlund, D., 2007. Cryptotephra sedimentation processes within two lacustrine sequences from west central Sweden. Holocene 17, 319330.
de Fontaine, C.S., Kaufman, D.S., Anderson, R.S., Werner, A., Waythomas, C.F., Brown, T.A., 2007. Late Quaternary distal tephra-fall deposits in lacustrine sediments, Kenai Peninsula, Alaska. Quaternary Research 68, 6478.
Denton, J.S., Pearce, N.J.G., 2008. Comment on “A synchronized dating of three Greenland ice cores through the Holocene” by B.M. Vinther et al.: no Minoan tephra in the 1642 B.C. layer of the GRIP ice core. Journal of Geophysical Research 113, D04303.
Edwards, M.E., Anderson, P.M., Garfinkel, H.L., Brubaker, L.B., 1985. Late Wisconsin and Holocene vegetation history of the upper Koyukuk region, central Brooks Range, Alaska. Canadian Journal of Botany 63, 616626.
Fierstein, J., Hildreth, W., 2008. Kaguyak dome field and its Holocene caldera, Alaska Peninsula. Journal of Volcanology and Geothermal Research 177, 340366.
Guthrie, R.D., 2006. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441, 207209.
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., Brown, T.A., 2009. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 79, 201219.
Jennings, A., Thordarson, T., Zalzal, K., Stoner, J., Hayward, C., Geirsdóttir, Á., Miller, G., 2014. Holocene tephra from Iceland and Alaska in SE Greenland shelf sediments. Geological Society, London, Special Publications 398, 157193.
Jensen, B.J.L., Froese, D.G., Preece, S.J., Westgate, J.A., Stachel, T., 2008. An extensive middle to late Pleistocene tephrochronologic record from east-central Alaska. Quaternary Science Reviews 27, 411427.
Jensen, B.J.L., Pyne-O’Donnell, S., Plunkett, G., Froese, D.G., Hughes, P.D.M., Sigl, M., McConnell, J.R., et al. 2014. Transatlantic distribution of the Alaskan White River Ash. Geology 42, 875878.
Kaufman, D.S., Jensen, B.J., Reyes, A.V., Schiff, C.J., Froese, D.G., Pearce, N.J., 2012. Late Quaternary tephrostratigraphy, Ahklun Mountains, SW Alaska. Journal of Quaternary Science 27, 344359.
Kuehn, S.C., Froese, D.G., Shane, P.A.R., INTAV Intercomparison Participants. 2011. The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: results and recommendations. Quaternary International 246, 1947.
Lerbekmo, J.F., 2008. The White River Ash: largest Holocene Plinian tephra. Canadian Journal of Earth Sciences 45, 693700.
Lowe, D.J., 2011. Tephrochronology and its application: a review. Quaternary Geochronology 6, 107153.
Mackay, H., Hughes, P.D.M., Jensen, B.J.L., Langdon, P.G., Pyne-O’Donnell, S.D.F., Plunkett, G., Froese, D.G., Coulter, S., 2016. A mid to late Holocene cryptotephra framework from eastern North America. Quaternary Science Reviews 132, 101113.
Mangerud, J., Lie, S.E., Furnes, H., Kristiansen, I.L., Lømo, L., 1984. A Younger Dryas ash bed in western Norway, and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic. Quaternary Research 21, 85104.
Miller, T.P., Smith, R.L., 1987. Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska. Geology 15, 434438.
Neal, C.A., McGimsey, R.G., Miller, T.P., Riehle, J.R., Waythomas, C.F., 2001). Preliminary Volcano-Hazard Assessment for Aniakchak Volcano, Alaska. Open-File Report 00-519. U.S. Geological Survey, Anchorage, AK.
Oswald, W.W., Gavin, D.G., Anderson, P.M., Brubaker, L.B., Hu, F.-S., 2012. A 14,500-year record of landscape change from Okpilak Lake, northeastern Brooks Range, northern Alaska. Journal of Paleolimnology 48, 101113.
Payne, R., Blackford, J., van der Plicht, J., 2008. Using cryptotephras to extend regional tephrochronologies: an example from southeast Alaska and implications for hazard assessment. Quaternary Research 69, 4255.
Payne, R.J., Blackford, J.J., 2004. Distal micro-tephra deposits in southeast Alaskan peatlands. In: Emond, D.S., Lewis, L.L. (Eds.), Yukon Exploration and Geology 2003. Yukon Geological Survey, Whitehorse, YT, Canada, pp. 191197.
Payne, R.J., Blackford, J.J., 2008. Extending the late Holocene tephrochronology of the Kenai Peninsula, Alaska. Arctic 61, 243254.
Pearce, C., Varhelyi, A., Wastegård, S., Muschitiello, F., Barrientos, N., O’Regan, M., Cronin, T., et al. 2016. The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea. Climate of the Past Discussions (in review).
Preece, S.J., McGimsey, R.G., Westgate, J.A., Pearce, N.J.G., Hart, W.K., Perkins, W.T., 2014. Chemical complexity and source of the White River Ash, Alaska and Yukon. Geosphere 10, 10201042.
Pyne O’Donnell, S.D.F., 2011. The taphonomy of Last Glacial–Interglacial Transition (LGIT) distal volcanic ash in small Scottish lakes. Boreas 40, 131145.
Pyne O’Donnell, S.D.F., Hughes, P.D.M., Froese, D.G., Jensen, B.J.L., Kuehn, S.C., Mallon, G., Amesbury, M.J., et al. 2012. High-precision ultra-distal Holocene tephrochronology in North America. Quaternary Science Reviews 52, 611.
Reimer, P., Bard, E., Bayliss, A., Beck, J., Blackwell, P., Bronk Ramsey, C., Buck, C., Cheng, H., Edwards, R., Friedrich, M., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55, 18691887.
Riehle, J.R., 1985. A reconnaissance of the major Holocene tephra deposits in the upper Cook Inlet region, Alaska. Journal of Volcanology and Geothermal Research 26, 3774.
Riehle, J.R., 1994. Heterogeneity, correlatives, and proposed stratigraphic nomenclature of Hayes tephra set H, Alaska. Quaternary Research 41, 285288.
Riehle, J.R., Meyer, C.E., Ager, T.A., Kaufman, D.S., Ackerman, R.E., 1987. The Aniakchak tephra deposit, a late Holocene marker horizon in western Alaska. U.S. Geological Survey Circular 998, 1922.
Riehle, J.R., Waitt, R.B., Meyer, C.E., Calk, L.C., 1998. Age of formation of Kaguyak caldera, eastern Aleutian arc, Alaska, estimated by tephrochronology. U.S. Geological Survey Professional Paper 1595, 161–168.
Serreze, M.C., Lynch, A.H., Clark, M.P., 2001. The Arctic frontal zone as seen in the NCEP-NCAR reanalysis. Journal of Climate 14, 15501567.
Turney, C.S.M., 1998. Extraction of rhyolitic component of Vedde microtephra from minerogenic lake sediments. Journal of Paleolimnology 19, 199206.
Wallace, K., Coombs, M.L., Hayden, L.A., Waythomas, C.F., 2014. Significance of a Near-Source Tephra-Stratigraphic Sequence to the Eruptive History of Hayes Volcano, South-Central Alaska. Scientific Investigations Report 2014-5133. U.S. Geological Survey, Reston, VA.
Wright, H.E. Jr., Mann, D.H., Glaser, P.H., 1984. Piston corers for peat and lake sediments. Ecology 65, 657659.
Zander, P.D., Kaufman, D.S., Kuehn, S.C., Wallace, K.L., Anderson, R.S., 2013. Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska. Journal of Quaternary Science 28, 761771.
Zdanowicz, C., Fisher, D., Bourgeois, J., Demuth, M., Zheng, J., Mayewski, P.A., Kreutz, K., et al. 2014. Ice cores from the St. Elias Mountains, Yukon, Canada: their significance for climate, atmospheric composition and volcanism in the North Pacific region. Arctic 67, 3557.
Zdanowicz, C.M., Zielinski, G.A., Germani, M.S., 1999. Mount Mazama eruption: calendrical age verified and atmospheric impact assessed. Geology 27, 621624.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Monteath supplementary material
Monteath supplementary material 1

 Unknown (40.7 MB)
40.7 MB
Supplementary materials

Monteath supplementary material
Monteath supplementary material 2

 Unknown (31.9 MB)
31.9 MB
Supplementary materials

Monteath supplementary material
Monteath supplementary material 3

 PDF (2.2 MB)
2.2 MB

Chronology and glass chemistry of tephra and cryptotephra horizons from lake sediments in northern Alaska, USA

  • Alistair J. Monteath (a1), Maarten van Hardenbroek (a2), Lauren J. Davies (a3), Duane G. Froese (a3), Peter G. Langdon (a1), Xiaomei Xu (a4) and Mary E. Edwards (a1) (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.