Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T04:52:28.661Z Has data issue: false hasContentIssue false

Boreal peatland margins as repository sites of long-term natural disturbances of balsam fir/spruce forests

Published online by Cambridge University Press:  20 January 2017

Martin Lavoie*
Affiliation:
Département de Géographie and Centre d'études nordiques, Université Laval, Québec, Québec, Canada G1V 0A6 Centre d'études nordiques, Université Laval, Québec, Québec, Canada G1V 0A6
Louise Filion
Affiliation:
Département de Géographie and Centre d'études nordiques, Université Laval, Québec, Québec, Canada G1V 0A6 Centre d'études nordiques, Université Laval, Québec, Québec, Canada G1V 0A6
Élisabeth C. Robert
Affiliation:
Centre d'études nordiques, Université Laval, Québec, Québec, Canada G1V 0A6
*
*Corresponding author. Département de Géographie and Centre d’études nordiques, 2405, rue de la Terrasse, Université Laval, Québec, Québec, Canada, G1V 0A6. Fax: +1 418 656 2978. Email Addresses:martin.lavoie@cen.ulaval.ca (M. Lavoie), louise.filion@cen.ulaval.ca (L. Filion), elisabeth.robert@cen.ulaval.ca (É.C. Robert).

Abstract

A multidisciplinary, high-resolution paleoecological study (Lepidoptera and plant remains, macroscopic charcoal, pollen) was conducted on a 4000-yr peat monolith extracted from the margin of an ombrotrophic peatland on Anticosti Island (Gulf of St. Lawrence, eastern Canada) to reconstruct the long-term natural disturbances (insect outbreaks, forest fires) of a balsam fir/spruce forest. We hypothesized that an activity of insect defoliators (spruce budworm, hemlock looper) was the main disturbance factor of conifer forests during the Late Holocene. The earliest remains of spruce budworm and hemlock looper were found ca. 3220 and 2350 cal yr BP, respectively. Peaks of insect head capsules occurred from ca. 1640 to ca. 625 cal yr BP. Low balsam fir pollen concentrations during this period suggest a lengthy episode (∼ 1000 yr) of high insect activity, resulting in extensive fir dieback and mortality. The long-term dynamics of the pristine balsam fir/spruce forests were mainly governed by the activity of insect defoliators. The limited extent and possibly the low occurrence of forest fires in the maritime environment of Anticosti Island allowed the development of mature coniferous stands propitious for insect infestations. Insect head capsules appeared to be a useful and effective tool for establishing insect presence and activity during the Holocene.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.S., Davis, R.B., Miller, N.G., and Stuckenrath, R. History of late- and post-glacial vegetation and disturbance around Upper South Branch Pond, northern Maine. Canadian Journal of Botany 64, (1986). 19771986.Google Scholar
Appleby, P.G., and Oldfield, F. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5, (1978). 18.Google Scholar
Baskerville, G.L. Understanding forest management. Forestry Chronicle 62, (1986). 339347.Google Scholar
Benninghoff, W.S. Calculation of pollen and spore density in sediment by addition of exotic pollen in known quantities. Pollen et Spores 4, (1962). 332333.Google Scholar
Berggren, G. Atlas of Seeds and Small Fruits of Northwest European Plant Species. Part 2 Cyperaceae. (1969). Swedish Natural Science Research Council, Stockholm.Google Scholar
Bhiry, N., and Filion, L. Mid-Holocene hemlock decline in eastern North America linked with phytophagous insect activity. Quaternary Research 45, (1996). 312320.Google Scholar
Bhiry, N., and Filion, L. Holocene plant succession in a dune-swale environment of southern Québec: A macrofossil analysis. Écoscience 3, (1996). 330342.CrossRefGoogle Scholar
Bhiry, N., and Filion, L. Analyse des macrorestes végétaux. Payette, S., and Rochefort, L. Écologie des tourbières du Québec-Labrador. (2001). Les Presses de l'Université Laval, Québec. 259273.Google Scholar
Binford, M.W. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. Journal of Paleolimnology 3, (1990). 253267.Google Scholar
Blais, J.R. Trends in the frequency, extent, and severity of spruce budworm outbreaks in eastern Canada. Canadian Journal of Forest Research 13, (1983). 539547.Google Scholar
Bouchard, M., Kneeshaw, D., and Bergeron, Y. Forest dynamics after successive spruce budworm outbreaks in mixedwood forests. Ecology 87, (2006). 23192329.Google Scholar
Boulanger, Y., and Arseneault, D. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Canadian Journal of Forest Research 34, (2004). 10351043.CrossRefGoogle Scholar
Caccianiga, M., and Payette, S. Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Québec, Canada). Journal of Biogeography 33, (2006). 21202135.Google Scholar
Carcaillet, C., Bouvier, M., Fréchette, B., Larouche, A.C., and Richard, P.J.H. Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. The Holocene 11, (2001). 467476.CrossRefGoogle Scholar
Carroll, W.J. Lambdina fiscellaria fiscellaria (Guen.) (Lepidoptera: Geometridae) in Newfoundland, and notes on its biology. Canadian Entomologist 88, (1956). 587599.Google Scholar
Chouinard, A., and Filion, L. Detrimental effects of white-tailed deer browsing on balsam fir growth and recruitment in a second-growth stand on Anticosti Island, Quebec. Écoscience 8, (2001). 191198.Google Scholar
Chouinard, A., and Filion, L. Impact of introduced white-tailed deer and native insect defoliators on the density and growth of conifer saplings on Anticosti Island, Québec. Écoscience 12, (2005). 506518.Google Scholar
Clark, J.S., Lynch, J., Stocks, B.J., and Goldammer, J.G. Relationships between charcoal particles in air sediments in west-central Siberia. The Holocene 8, (1998). 1929.Google Scholar
Cronin, T.M., Dwyer, G.S., Kamiya, T., Schwede, S., and Willard, D.A. Medieval Warm Period, Little Ice Age and 20th century temperature variability from Chesapeake Bay. Global and Planetary Change 36, (2003). 1729.Google Scholar
Crum, H.A., and Anderson, L.E. Mosses of Eastern North America. (1980). Columbia University Press, New York.Google Scholar
Environment Canada, (2007). National climate archive. URL: http://www.climate.weatheroffice.ec.gc.ca/climateData/canada_e.html.Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. 4th ed. (1989). John Wiley & Sons, Chichester. revised by Faegri, K., Kaland, P.E., Krzywinski, K. Google Scholar
Filion, L., Payette, S., Delwaide, A., and Bhiry, N. Insect defoliators as major disturbance factors in the high-altitude balsam-fir forest of Mount Mégantic, southern Quebec. Canadian Journal of Forest Research 28, (1998). 18321842.Google Scholar
Filion, L., Payette, S., Robert, E.C., Delwaide, A., and Lemieux, C. Insect-induced tree dieback and mortality gaps in high-altitude balsam fir forests of northern New England and adjacent areas. Écoscience 13, (2006). 275287.Google Scholar
Foster, D.R. The history and pattern of fire in the boreal forests of southeastern Labrador. Canadian Journal of Botany 61, (1983). 24592471.Google Scholar
Foster, D.R., Oswald, W.W., Faison, E.K., Doughty, E.D., and Hanson, B.C.S. A climatic driver for abrupt mid-Holocene vegetation dynamics and the hemlock decline in New England. Ecology 87, (2006). 29592966.CrossRefGoogle ScholarPubMed
Fraver, S., Seymour, R.S., Speer, J.H., and White, A.S. Dendrochronological reconstruction of spruce budworm outbreaks in northern Maine, USA. Canadian Journal of Forest Research 37, (2007). 523529.Google Scholar
Germain, D., Lavoie, M., and Filion, L. Cliff-top eolian sedimentation reflecting Mid- to Late Holocene environmental changes at Anticosti Island, Gulf of St. Lawrence, eastern Canada. Journal of Coastal Research 25, (2009). Google Scholar
Grant, D.R. Le Quaternaire de la région des Appalaches atlantiques du Canada. Fulton, R.J. Le Quaternaire du Canada et du Groenland, Vol. 1. Commission géologique du Canada. (1989). Géologie du Canada, Ottawa. 421474.Google Scholar
Grehan, J.R., and Parker, B.L. Description of the first and final instar of the Hemlock Loopers Lambdina athasaria (Walker) and Lambdina fiscellaria (Guénée) (Lepidoptera: Geometridae). Canadian Entomologist 126, (1994). 15051514.Google Scholar
Haas, J.N., and McAndrews, J.H. The summer drought related hemlock (Tsuga canadensis) decline in Eastern North America 5700 to 5100 years ago. McManus, K. Proceedings. Symposium on Sustainable Management of Hemlock Ecosystems in Eastern North America (Durham, New Hampshire, USA, 1999). (2000). USDA Forest Service General Technical Report NE-267, 8188.Google Scholar
Holling, C.S. The role of forest insects in structuring the boreal landscape. Shugart, H.H., Leemans, L., and Bonan, G.B. A Systems Analysis of the Global Boreal Forest. (1992). Cambridge University Press, Cambridge. 170191.Google Scholar
Ireland, R.R. Moss Flora of the Maritime Provinces. (1982). National Museum of Natural Sciences, Ottawa, Ontario.Google Scholar
Ireland, R.R., and Bellolio-Trucco, G. Illustrated Guide to some Hornworts, Liverworts and Mosses of Eastern Canada, Syllogeus No. 62. (1987). National Museum of Natural Sciences, Ottawa, Ontario.Google Scholar
Jasinski, J.P.P., and Payette, S. The creation of alternative stable states in the southern boreal forest, Québec, Canada. Ecological Monographs 75, (2005). 561583.Google Scholar
Johnson, E.A. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest. (1992). Cambridge University Press, Google Scholar
Juggins, S. Palaeo Data Plotter, Beta test version 1.0. (2002). University of Newcastle, Newcastle upon Tyne.Google Scholar
Lavoie, M., and Richard, P.J.H. The role of climate on the developmental history of Frontenac Peatland, southern Québec. Canadian Journal of Botany 78, (2000). 668684.Google Scholar
Lavoie, M., and Filion, L. Holocene vegetation dynamics of Anticosti Island, Québec, and consequences of remoteness on ecological succession. Quaternary Research 56, (2001). 112127.Google Scholar
Lévesque, P.E.M., Dinel, H., and Larouche, A. Guide illustré des macrofossiles végétaux des tourbières du Canada. (1988). Agriculture Canada, Publication no. 1817 Google Scholar
Mackay, M.R. Larvae of the North American Olethreutidae (Lepidoptera). Canadian Entomologist (1959). Supplement 10, 338 pGoogle Scholar
Mackay, M.R. Larvae of the North American Tortricinae (Lepidoptera: Tortricidae). Canadian Entomologist (1962). Supplement 28, 182 pGoogle Scholar
MacLean, D.A. Effects of spruce budworm outbreaks on the productivity and the stability of balsam fir forest. Forestry Chronicle 60, (1984). 273279.CrossRefGoogle Scholar
MacLean, D.A., and Ostaff, D.P. Patterns of balsam fir mortality caused by an uncontrolled spruce budworm outbreak. Canadian Journal of Forest Research 19, (1989). 10871095.Google Scholar
Marie-Victorin, F. Flore Laurentienne. 3e édition (1995). Les Presses de l'Université de Montréal, Montréal.Google Scholar
Martel, M., (1999). Analyse dendroécologique des effets de la défoliation par l'arpenteuse de la pruche (Lambdina fiscelleria (Guen.)) sur les populations forestières de l'île d'Anticosti, Québec. M.Sc. thesis, Université Laval, .Google Scholar
Martin, A.C., and Barkley, W.D. Seed Identification Manual. (1961). University of California Press, Berkeley, California.Google Scholar
McGuffin, W.C. Guide to the Geometridae of Canada (Lepidoptera) II. Subfamily Ennominae. Memoirs of the Entomological Society of Canada 138, (1987). Google Scholar
McGugan, B.M. Needle-mining habits and larval instars of the spruce budworm. Canadian Entomologist 86, (1954). 439454.CrossRefGoogle Scholar
Middledorp, A.A. Pollen concentration as a basis for indirect dating and quantifying net organic and fungal production in a peat bog ecosystem. Review of Palaeobotany and Palynology 37, (1982). 225282.Google Scholar
Montgomery, F.H. Seeds and Fruits of Plants of Eastern Canada and Northeastern United States. (1977). University of Toronto Press, Toronto, Ontario.Google Scholar
Morin, H. Dynamics of balsam fir forests in relation to spruce budworm outbreaks in the boreal zone, Quebec. Canadian Journal of Forest Research 24, (1994). 730741.CrossRefGoogle Scholar
Ohlson, M., and Tryterud, E. Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. The Holocene 10, (2000). 519525.Google Scholar
Olsson, I.U. Radiometric dating. Berglund, B.E. Handbook of Holocene Palaeoecology and Palaeohydrology. (1986). Wiley, New York. 273312.Google Scholar
Otvos, I.S., Clarke, L.J., Durling, D.S., (1979). A history of recorded eastern hemlock looper outbreaks in Newfoundland. Canadian Environment and Forestry Service, Report N-X-179, St. John's.Google Scholar
Payette, S., Bhiry, N., Delwaide, A., and Simard, M. Origin of the lichen woodland at its southern range limit in eastern Canada: the catastrophic impact of insect defoliators and fire on the spruce–moss forest. Canadian Journal of Forest Research 30, (2000). 288305.Google Scholar
Peters, M.E., and Higuera, P.E. Quantifying the source area of macroscopic charcoal with a particle dispersal model. Quaternary Research 67, (2007). 304310.Google Scholar
Peterson, A. Larvae of Insects: An introduction to Nearctic Species, Part I: Lepidoptera and Plant infesting Hymenoptera, Part I. (1951). Columbus, Ohio.Google Scholar
Potvin, F., (1992). L'habitat du cerf à Anticosti de 1978 à 1988: suivi quinquennal. Ministère du Loisir, de la Chasse et de la Pêche, Direction de la faune terrestre, Québec., SP 1020.Google Scholar
Potvin, F., Beaupré, P., and Laprise, G. The eradication of balsam fir stands by white-tailed deer on Anticosti Island, Québec: a 150-year process. Écoscience 10, (2003). 487495.Google Scholar
Ribeiro-Fincatti, C., (2006). Changements récents dans la structure et la composition de la végétation sur l'île d'Anticosti (Québec): une analyse pollinique et macrofossile. M.Sc. thesis, Université Laval, .Google Scholar
Royama, T. Population dynamics of the spruce budworm Choristoneura fumiferana . Ecological Monographs 54, (1984). 429462.CrossRefGoogle Scholar
Ruel, J.-C., and Pineau, M. Windthrow as an important process for white spruce regeneration. Forestry Chronicle 78, (2002). 732738.Google Scholar
Simard, I., Morin, H., and Potelle, B. A new paleoecological approach to reconstruct long-term history of spruce budworm outbreaks. Canadian Journal of Forest Research 32, (2002). 428438.Google Scholar
Simard, I., Morin, H., and Lavoie, C. A millennial-scale reconstruction of spruce budworm abundance in Saguenay, Québec, Canada. The Holocene 16, (2006). 3137.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Reimer, R., (2005). CALIB 5.0.1.. [WWW program and documentation] URL: http://www.calib.org.Google Scholar
Thompson, I.D., Larson, D.J., and Montevecchi, W.A. Characterization of old “wet boreal” forests, with an example from balsam fir forests of western Newfoundland. Environmental Reviews 11, (2003). S23S46.Google Scholar
Weng, C., and Jackson, T. Species differentiation of North American spruce (Picea) based on morphological and anatomical characteristics of needles. Canadian Journal of Botany 78, (2000). 13671383.Google Scholar
Young, J.A., and Young, C.G. Seeds of Woody Plants in North America, Revised and Enlarged Edition. (1992). Doiscorides Press, Portland, Oregon.Google Scholar