Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-7x8lp Total loading time: 0.229 Render date: 2021-03-07T07:25:48.229Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering

Published online by Cambridge University Press:  16 October 2017

Xiaonan Zhang
Affiliation:
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Aifeng Zhou
Affiliation:
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Xin Wang
Affiliation:
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Mu Song
Affiliation:
Department of Earth Sciences, The University of Hong Kong, Hong Kong 999077, China
Yongtao Zhao
Affiliation:
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
Haichao Xie
Affiliation:
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
James M. Russell
Affiliation:
Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island 02912, USA
Fahu Chen
Affiliation:
Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China Institute of Tibetan Plateau Research, Chinese Academy of Science, Beijing 100101, China
Corresponding

Abstract

The grain-size distribution (GSD) of sediments provides information on sediment provenance, transport processes, and the sedimentary environment. Although a wide range of statistical parameters have been applied to summarize GSDs, most are directed at only parts of the distribution, which limits the amount of environmental information that can be retrieved. Endmember modeling provides a flexible method for unmixing GSDs; however, the calculation of the exact number of endmembers and geologically meaningful endmember spectra remain unresolved using existing modeling methods. Here we present the methodology hierarchical clustering endmember modeling analysis (CEMMA) for unmixing the GSDs of sediments. Within the CEMMA framework, the number of endmembers can be inferred from agglomeration coefficients, and the grain-size spectra of endmembers are defined on the basis of the average distance between the samples in the clusters. After objectively defining grain-size endmembers, we use a least squares algorithm to calculate the fractions of each GSD endmember that contributes to individual samples. To test the CEMMA method, we use a grain-size data set from a sediment core from Wulungu Lake in the Junggar Basin in China, and find that application of the CEMMA methodology yields geologically and mathematically meaningful results. We conclude that CEMMA is a rapid and flexible approach for analyzing the GSDs of sediments.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 12371248.CrossRefGoogle Scholar
Boulay, S., Colin, C., Trentesaux, A., Pluquet, F., Bertaux, J., Blamart, D., Buehring, C., Wang, P., 2003. Mineralogy and sedimentology of Pleistocene sediments on the South China Sea (ODP Site 1144). In: Prell, W.L., Wang, P., Blum, P., Rea, D.K., Clemens, S.C. (Eds.), Proceedings of the Ocean Drilling Program: Scientific Results. Vol. 184. Ocean Drilling Program, Texas A&M University, College Station, pp. 121.Google Scholar
Chen, F., Chen, J., Holmes, J., Boomer, I., Austin, P., Gates, J.B., Wang, N., Brooks, S.J., Zhang, J., 2010. Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quaternary Science Reviews 29, 10551068.CrossRefGoogle Scholar
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., et al., 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, 351364.CrossRefGoogle Scholar
Chiu, T., Fang, D., Chen, J., Wang, Y., Jeris, C., 2001. A robust and scalable clustering algorithm for mixed type attributes in large database environment. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, pp. 263–268.Google Scholar
Clark, M.W., 1976. Some methods for statistical analysis of multimodal distributions and their application to grain-size data. Journal of the International Association for Mathematical Geology 8, 267282.CrossRefGoogle Scholar
Court, A., 1949. Separating frequency distributions into two normal components. Science 110, 500501.CrossRefGoogle ScholarPubMed
Dietze, E., Hartmann, K., Diekmann, B., Ijmker, J., Lehmkuhl, F., Opitz, S., Stauch, G., Wünnemann, B., Borchers, A., 2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology 243–244, 169180.CrossRefGoogle Scholar
Donato, S.V., Reinhardt, E.G., Boyce, J.I., Pilarczyk, J.E., Jupp, B.P., 2009. Particle-size distribution of inferred tsunami deposits in Sur Lagoon, Sultanate of Oman. Marine Geology 257, 5464.CrossRefGoogle Scholar
Everitt, B.S., Landau, S., Leese, M., Stahl, D., 2011. Hierarchical clustering. In: Everitt, B.S., Landau, S., Leese, M., Stahl, D. (Eds.), Cluster Analysis. 5th ed. John Wiley and Sons, Chichester, UK, pp. 71110.CrossRefGoogle ScholarPubMed
Folk, R.L., Ward, W.C., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Research 27, 326.CrossRefGoogle Scholar
Fournier, J., Gallon, R.K., Paris, R., 2014. G2Sd: a new R package for the statistical analysis of unconsolidated sediments. Géomorphologie: Relief, Processus, Environnement 20, 7378.Google Scholar
Ghosh, J.K., Mazumder, B.S., 1981. Size distribution of suspended particles—unimodality, symmetry and lognormality. In: Taillie, C., Patil, G.P., Baldessari, B.A. (Ed.), Statistical Distributions in Scientific Work. Vol. 6. Applications in Physical, Social, and Life Sciences. D. Reidal, Dordrecht, the Netherlands, pp. 2132.CrossRefGoogle Scholar
Grimm, E.C., Donovan, J.J., Brown, K.J., 2011. A high-resolution record of climate variability and landscape response from Kettle Lake, northern Great Plains, North America. Quaternary Science Reviews 30, 26262650.CrossRefGoogle Scholar
Gruvaeus, G., Wainer, H., 1972. Two additions to hierarchical cluster analysis. British Journal of Mathematical and Statistical Psychology 25, 200206.CrossRefGoogle Scholar
He, Y., Zhao, C., Song, M., Liu, W., Chen, F., Zhang, D., Liu, Z., 2015. Onset of frequent dust storms in northern China at ~AD 1100. Scientific Reports 5, 17111. http://dx.doi.org/10.1038/srep17111.CrossRefGoogle ScholarPubMed
Hill, E.W., Brennan, J.F., Wolman, H.L., 1998. What is a central city in the United States? Applying a statistical technique for developing taxonomies. Urban Studies 35, 19351969.CrossRefGoogle Scholar
Inman, D.L., 1952. Measures for describing the size distribution of sediments. Journal of Sedimentary Research 22, 125145.Google Scholar
Johnson, S.C., 1967. Hierarchical clustering schemes. Psychometrika 32, 241254.CrossRefGoogle ScholarPubMed
Kaufman, L., Rousseeuw, P.J., 2009. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, Hoboken, NJ.Google Scholar
Langfelder, P., Zhang, B., Horvath, S., 2008. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719720.CrossRefGoogle ScholarPubMed
Liu, J., Rühland, K.M., Chen, J., Xu, Y., Chen, S., Chen, Q., Huang, W., Xu, Q., Chen, F., Smol, J.P., 2017. Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau. Nature Climate Change 7, 190194.CrossRefGoogle Scholar
Liu, X., Herzschuh, U., Shen, J., Jiang, Q., Xiao, X., 2008. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quaternary Research 70, 412425.CrossRefGoogle Scholar
Nelson, P.A., Bellugi, D., Dietrich, W.E., 2014. Delineation of river bed-surface patches by clustering high-resolution spatial grain size data. Geomorphology 205, 102119.CrossRefGoogle Scholar
Ordóñez, C., Ruiz-Barzola, O., Sierra, C., 2016. Sediment particle size distributions apportionment by means of functional cluster analysis (FCA). Catena 137, 3136.CrossRefGoogle Scholar
Passega, R., 1964. Grain size representation by CM patterns as a geological tool. Journal of Sedimentary Research 34, 830847.CrossRefGoogle Scholar
Paterson, G.A., Heslop, D., 2015. New methods for unmixing sediment grain size data. Geochemistry, Geophysics, Geosystems 16, 44944506.CrossRefGoogle Scholar
Qiang, M., Chen, F., Zhou, A., Xiao, S., Zhang, J., Zhang, J., 2007. Impacts of wind velocity on sand and dust deposition during dust storm as inferred from a series of observations in the northeastern Qinghai–Tibetan Plateau, China. Powder Technology 175: 8289.CrossRefGoogle Scholar
Qin, X., Cai, B., Liu, T., 2005. Loess record of the aerodynamic environment in the east Asia monsoon area since 60,000 years before present. Journal of Geophysical Research: Solid Earth 110, B01204. http://dx.doi.org/10.1029/2004JB003131.CrossRefGoogle Scholar
Renner, R.M., 1991. An examination of the use of the logratio transformation for the testing of endmember hypotheses. Mathematical Geology 23, 549563.CrossRefGoogle Scholar
Rodriguez, A., Laio, A., 2014. Clustering by fast search and find of density peaks. Science 344, 14921496.CrossRefGoogle ScholarPubMed
Salvador, S., Chan, P., 2004. Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. In: Proceedings 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, pp. 576–584.Google Scholar
Singer, A., 1984. The paleoclimatic interpretation of clay minerals in sediments—a review. Earth-Science Reviews 21, 251293.CrossRefGoogle Scholar
Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z., Ruixia, S., 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology 152, 263277.CrossRefGoogle Scholar
Tibshirani, R., Walther, G., Hastie, T., 2001. Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63, 411423.CrossRefGoogle Scholar
Visher, G.S., 1969. Grain size distributions and depositional processes. Journal of Sedimentary Research 39, 10741106.Google Scholar
Weltje, G.J., 1997. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology 29, 503549.CrossRefGoogle Scholar
Weltje, G.J., Prins, M.A., 2003. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sedimentary Geology 162, 3962.CrossRefGoogle Scholar
Weltje, G.J., Prins, M.A., 2007. Genetically meaningful decomposition of grain-size distributions. Sedimentary Geology 202, 409424.CrossRefGoogle Scholar
Wu, J., Ma, L., Zeng, H., 2013. Water quantity and quality change of Ulungur Lake and its environmental effects. [In Chinese with English abstract.]. Journal of Nature Resources 28, 844853.Google Scholar
Xu, R., Wunsch, D., 2005. Survey of clustering algorithms. IEEE Transactions on Neural Networks 16, 645678.CrossRefGoogle ScholarPubMed
Yu, S., Colman, S.M., Li, L., 2015. BEMMA: a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions. Mathematical Geosciences, 119.Google Scholar
Zhang, X., Zhou, A., Zhang, C., Hao, S., Zhao, Y., An, C., 2016. High-resolution records of climate change in arid eastern central Asia during MIS 3 (51 600–25 300 cal a BP) from Wulungu Lake, north-western China. Journal of Quaternary Science 31, 577586.CrossRefGoogle Scholar
Zhou, D., Chen, H., Lou, Y., 1991. The logratio approach to the classification of modern sediments and sedimentary environments in northern South China Sea. Mathematical Geology 23, 157165.CrossRefGoogle Scholar

Zhang et al supplementary material 1

Zhang et al supplementary material

Image 107 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 49
Total number of PDF views: 239 *
View data table for this chart

* Views captured on Cambridge Core between 16th October 2017 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Unmixing grain-size distributions in lake sediments: a new method of endmember modeling using hierarchical clustering
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *