Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-28jzs Total loading time: 0.39 Render date: 2021-02-25T19:36:58.591Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Speleothem evidence for late Holocene climate variability and floods in Southern Greece

Published online by Cambridge University Press:  20 January 2017

Martin Finné
Affiliation:
Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden Navarino Environmental Observatory (NEO), Messinia, Greece Bolin Centre for Climate Research, Stockholm University, Sweden
Miryam Bar-Matthews
Affiliation:
Geological Survey of Israel, 30 Malchei Israel Street, Jerusalem 95501, Israel
Karin Holmgren
Affiliation:
Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden Navarino Environmental Observatory (NEO), Messinia, Greece Bolin Centre for Climate Research, Stockholm University, Sweden
Hanna S. Sundqvist
Affiliation:
Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden Navarino Environmental Observatory (NEO), Messinia, Greece Bolin Centre for Climate Research, Stockholm University, Sweden
Ilias Liakopoulos
Affiliation:
Ephorate of Palaeoanthropology and Speleology of Southern Greece, Greece
Qiong Zhang
Affiliation:
Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm, Sweden Bolin Centre for Climate Research, Stockholm University, Sweden

Abstract

We present stable isotope data (δ18O, δ13C) from a detrital rich stalagmite from Kapsia Cave, the Peloponnese, Greece. The cave is rich in archeological remains and there are reasons to believe that flooding of the cave has directly affected humans using the cave. Using a combination of U–Th and 14C dating to constrain a site-specific correction factor for (232Th/238U) detrital molar ratio, a linear age model was constructed. The age model shows that the stalagmite grew during the period from ca. 950 BC to ca. AD 830. The stable oxygen record from Kapsia indicates cyclical changes of close to 500 yr in precipitation amount, with rapid shifts towards wetter conditions followed by slowly developing aridity. Superimposed on this signal, wetter conditions are inferred around 850, 700, 500 and 400–100 BC, and around AD 160–300 and AD 770; and driest conditions are inferred to have occurred around 450 BC, AD 100–150 and AD 650. Detrital horizons in the stalagmite indicate that three major floods took place in the cave at 500 BC, 70 BC and AD 450. The stable carbon isotope record reflects changes in biological activity being a result of both climate and human activities.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below.

References

Abrantes, F., Voelker, A.H.L., Sierro, F.J., Naughton, F., Rodrigues, T., Cacho, I., Ariztegui, D., Brayshaw, D., Sicre, M.-A., and Batista, L. Paleoclimate variability in the Mediterranean Region. Lionello, P. Climate of the Mediterranean Region: From the Past to the Future. (2012). Elsevier, London. 186.Google Scholar
Almogi-Labin, A., Bar-Matthews, M., Shriki, D., Kolosovsky, E., Paterne, M., Schilman, B., Ayalon, A., Aizenshtat, Z., and Matthews, A. Climatic variability during the last ̴90 ka of the southern and northern Levantine Basin as evident from marine records and speleothems. Quaternary Science Reviews 28, (2009). 28822896.CrossRefGoogle Scholar
Argiriou, A.A., and Lykoudis, S. Isotopic composition of precipitation in Greece. Journal of Hydrology 327, (2006). 486495.CrossRefGoogle Scholar
Atherden, M., Hall, J., and Wright, J.C. A pollen diagram from the northeast Peloponnese, Greece: implications for vegetation history and archaeology. The Holocene 4, (1993). 351356.CrossRefGoogle Scholar
Baldini, J.U.L., McDermott, F., Baker, A., Baldini, L.M., Mattey, D.P., and Railsback, L.B. Biomass effects on stalagmite growth and isotope ratios: a 20th century analogue from Wiltshire, England. Earth and Planetary Science Letters 240, (2005). 486494.CrossRefGoogle Scholar
Bard, E., Antonioli, F., and Silenzi, S. Sea-level during the penultimate interglacial period based on a submerged stalagmite from Argentarola Cave (Italy). Earth and Planetary Science Letters 196, (2002). 135146.CrossRefGoogle Scholar
Bar-Matthews, M., and Ayalon, A. Speleothems as palaeoclimate indicators, a case study from Soreq Cave located in the eastern Mediterranean region, Israel. Battarbee, R.W., Gasse, F., and Stickley, C.E. Past Climate Variability Through Europe and Africa. (2004). Springer, Dordrecht. 363391.Google Scholar
Bar-Matthews, M., and Ayalon, A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. The Holocene 21, (2011). 163171.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., and Kaufman, A. Late Quaternary Paleoclimate in the Eastern Mediterranean Region from stable isotope analysis of speleothems at Soreq Cave, Israel. Quaternary Research 47, (1997). 155168.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., and Wasserburg, G.J. The eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth and Planetary Science Letters 166, (1999). 8595.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C.J. Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, (2003). 31813199.CrossRefGoogle Scholar
Bartsiokas, A., Merdenisianos, K., Zafeiratos, K., (1981). Τα ανθρωπολογικά ευρήματα του σπηλαίου Κάψια Τριπόλεως και η ιστορία του�.�. (1ο Πανελλήνιο Σπηλαιολογικό Συμπόσιο. Αθήνα 1981. Δελτίο Ελληνικής Σπηλαιολογικής Εταιρείας (Ε.Σ.Ε.) ΧVΙΙΙ 1–2, 198182.).Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on north Atlantic climate during the Holocene. Science 294, (2001). 21302136.CrossRefGoogle ScholarPubMed
Bordon, A., Peyron, O., Lézine, A.-M., Brewer, S., and Fouache, E. Pollen-inferred Late-Glacial and Holocene climate in southern Balkans (Lake Maliq). Quaternary International 200, (2009). 1930.CrossRefGoogle Scholar
Came, R.E., Oppo, D.W., and McManus, J.F. Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the past 10 k.y.. Geology 35, (2007). 315318.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., and Asmerom, Y. The half-lives of uranium-234 and thorium-230. Chemical Geology 169, (2000). 1733.CrossRefGoogle Scholar
Cosford, J., Qing, H., Mattey, D., Eglington, B., and Zhang, M. Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China. Palaeogeography, Palaeoclimatology, Palaeoecology 280, (2009). 235244.CrossRefGoogle Scholar
Couchoud, I., Genty, D., Hoffmann, D., Drysdale, R., and Blamart, D. Millennial-scale climate variability during the Last Interglacial recorded in a speleothem from south-western France. Quaternary Science Reviews 28, (2009). 32633274.CrossRefGoogle Scholar
Cullen, H.M., and DeMenocal, P.B. North Atlantic influence on Tigris–Euphrates streamflow. International Journal of Climatology 20, (2000). 853863.3.0.CO;2-M>CrossRefGoogle Scholar
Di Rita, F., and Magri, D. Holocene drought, deforestation and evergreen vegetation development in the central Mediterranean: a 5500 year record from Lago Alimini Piccolo, Apulia, southeast Italy. The Holocene 19, (2009). 295306.CrossRefGoogle Scholar
Dorale, J.A., Edwards, R.L., Alexander, E.C., Shen, C.-C., Richards, D.A., and Cheng, H. Uranium-series dating of speleothems: current techniques, limits and applications. Sasowsky, I.D., and Mylroie, J. Studies of Cave Sediments. Physical and Chemical Records of Palaeoclimate (2004). Kluwer Academic, New York. 177197.Google Scholar
Dotsika, E., Lykoudis, S., and Poutoukis, D. Spatial distribution of the isotopic composition of precipitation and spring water in Greece. Global and Planetary Change 71, (2010). 141149.CrossRefGoogle Scholar
Drysdale, R.N., Zanchetta, G., Hellstrom, J.C., Fallick, A.E., and Zhao, J.-X. Stalagmite evidence for the onset of the Last Interglacial in southern Europe at 129 ± 1 ka. Geophysical Research Letters 32, (2005). 14.CrossRefGoogle Scholar
Drysdale, R., Zanchetta, G., Hellstrom, J., Maas, R., Fallick, A., Pickett, M., Cartwright, I., and Piccini, L. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian flowstone. Geology 34, (2006). 101104.CrossRefGoogle Scholar
Eastwood, W.J., Leng, M.J., Roberts, N., and Davis, B. Holocene climate change in the eastern Mediterranean region: a comparison of stable isotope and pollen data from Lake Gölhisar, southwest Turkey. Journal of Quaternary Science 22, (2007). 327341.CrossRefGoogle Scholar
Emeis, K.-C., and Dawson, A.G. Holocene palaeoclimate records over Europe and the North Atlantic. The Holocene 13, (2003). 305309.CrossRefGoogle Scholar
Emeis, K.C., Struck, U., Schulz, H.M., Rosenberg, R., Bernasconi, S., Erlenkeuser, H., Sakamoto, T., and Martinez-Ruiz, F. Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeography, Palaeoclimatology, Palaeoecology 158, (2000). 259280.CrossRefGoogle Scholar
Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D., and McDermott, F. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, (2006). 105153.CrossRefGoogle Scholar
Faupl, P., Pavlopoulos, A., and Migiros, G. Provenance of the Peloponnese (Greece) flysch based on heavy minerals. Geological Magazine 139, (2002). 513524.CrossRefGoogle Scholar
Feidas, H., Makrogiannis, T., and Bora-Senta, E. Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theoretical and Applied Climatology 79, (2004). 185208.CrossRefGoogle Scholar
Fensterer, C., Scholz, D., Hoffmann, D., Mangini, A., and Pajón, J.M. 230Th/U-dating of a late Holocene low uranium speleothem from Cuba. IOP Conf. Ser.: Earth and Environmental Science 9, (2010). 012015 CrossRefGoogle Scholar
Finné, M., Holmgren, K., Sundqvist, H.S., Weiberg, E., and Lindblom, M. Climate in the eastern Mediterranean, and adjacent regions, during the past 6 000 years — a review. Journal of Archaeological Science 38, (2011). 31533173.CrossRefGoogle Scholar
Fleitmann, D., Cheng, H., Badertscher, S., Edwards, R.L., Mudelsee, M., Göktürk, O.M., Fankhauser, A., Pickering, R., Raible, C.C., Matter, A., Kramers, J., and Tüysüz, O. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters 36, (2009). (art. no. L19707) CrossRefGoogle Scholar
Fougères, G. Mantinée et l' Arcadie orientale. (1898). (Paris 1898) Google Scholar
Frisia, S., and Borsato, A. Karst (chapter 6). Developments in Sedimentology 61, C (2010). 269318.CrossRefGoogle Scholar
Frisia, S., Borsato, A., Mangini, A., Spötl, C., Madonia, G., and Sauro, U. Holocene climate variability in Sicily from a discontinuous stalagmite record and the Mesolithic to Neolithic transition. Quaternary Research 66, (2006). 388400.CrossRefGoogle Scholar
Frogley, M.R., Griffiths, H.I., and Heaton, T.H.E. Historical biogeography and late Quaternary environmental change of Lake Pamvotis, Ioannina (north-western Greece): evidence from ostracods. Journal of Biogeography 28, (2001). 745756.CrossRefGoogle Scholar
Frumkin, A., Carmi, I., Gopher, A., Ford, D.C., Schwarcz, H.P., and Tsuk, T. A Holocene millennial-scale climatic cycle from a speleothem in Nahal Qanah Cave, Israel. The Holocene 9, (1999). 677682.CrossRefGoogle Scholar
Genty, D., and Deflandre, G. Drip flow variations under a stalactite of the Pere Noel cave (Belgium). Evidence of seasonal variations and air pressure constraints. Journal of Hydrology 211, (1998). 208232.CrossRefGoogle Scholar
Genty, D., and Massault, M. Bomb 14C recorded in laminated speleothems: calculation of dead carbon proportion. Radiocarbon 39, (1997). 3348.CrossRefGoogle Scholar
Genty, D., Vokal, B., Obelic, B., and Massault, M. Bomb 14C time history recorded in two modern stalagmites — importance for soil organic matter dynamics and bomb 14C distribution over continents. Earth and Planetary Science Letters 160, (1998). 795809.CrossRefGoogle Scholar
Genty, D., Massault, M., Gilmour, M., Baker, A., Verheyden, S., and Kepens, E. Calculation of past dead carbon proportion and variability by the comparison of AMS 14C and TIMS U/Th ages on two Holocene stalagmites. Radiocarbon 41, (1999). 251270.CrossRefGoogle Scholar
Göktürk, O.M., Fleitmann, D., Badertscher, S., Cheng, H., Edwards, R.L., Leuenberger, M., Fankhauser, A., Tüysüz, O., and Kramers, J. Climate on the southern Black Sea coast during the Holocene: implications from the Sofular Cave record. Quaternary Science Reviews 30, (2011). 24332445.CrossRefGoogle Scholar
Gopher, A., Ayalon, A., Bar-Matthews, M., Barkai, R., Frumkin, A., Karkanas, P., and Shahack-Gross, R. The chronology of the late Lower Paleolithic in the Levant based on U–Th ages of speleothems from Qesem Cave, Israel. Quaternary Geochronology 5, (2010). 644656.CrossRefGoogle Scholar
Grant, K.M., Rohling, E.J., Bar-Matthews, M., Ayalon, A., Medina-Elizalde, M., Bronk Ramsey, C., Satow, C., and Roberts, A.P. Rapid coupling between ice volume and polar temperature over the past 150 kyr. Nature 491, (2012). 744747.CrossRefGoogle Scholar
Harding, A.E., Palutikof, J., and Holt, T. The climate system. Woodward, J.C. The Physical Geography of the Mediterranean. (2009). Oxford University Press, Oxford. 6988.Google Scholar
Hellstrom, J. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology 1, (2006). 289295.CrossRefGoogle Scholar
Henderson, G.M., Slowey, N.C., and Fleisher, M.Q. U–Th dating of carbonate platform and slope sediments. Geochimica et Cosmochimica Acta 65, (2001). 27572770.CrossRefGoogle Scholar
Hendy, C.H. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochimica et Cosmochimica Acta 35, (1971). 801824.CrossRefGoogle Scholar
Hendy, C.H., and Wilson, A.T. Palaeoclimatic data from speleothems. Nature 219, (1968). 4851.CrossRefGoogle Scholar
Higgins, M.D., and Higgins, R.A. A Geological Companion to Greece and the Aegean. (1996). Duckworth, London. (240 pp.)Google Scholar
Hodge, E., McDonald, J., Fischer, M., Redwood, D., Hual, Q., Levchenko, V., Drysdale, R., Waring, C., and Fink, D. Using the 14C bomb pulse to date young speleothems. Radiocarbon 53, (2011). 345357.CrossRefGoogle Scholar
Hodkinson, S., and Hodkinson, H. Mantineia and the Mantinike: settlement and society in a Greek Polis. ABSA 76, 1981 (1981). 239296.Google Scholar
Jahns, S. On the Holocene vegetation history of the Argive Plain (Peloponnese, southern Greece). Vegetation History and Archaeobotany 2, (1993). 187203.CrossRefGoogle Scholar
Jex, C.N., Baker, A., Fairchild, I.J., Eastwood, W.J., Leng, M.J., Sloane, H.J., Thomas, L., and Bekaroğlu, E. Calibration of speleothem δ18O with instrumental climate records from Turkey. Global and Planetary Change 71, (2010). 207217.CrossRefGoogle Scholar
Jex, C.N., Baker, A., Eden, J.M., Eastwood, W.J., Fairchild, I.J., Leng, M.J., Thomas, L., and Sloane, H.J. A 500 yr speleothem-derived reconstruction of late autumn–winter precipitation, northeast Turkey. Quaternary Research 75, (2011). 399405.CrossRefGoogle Scholar
Jones, M.D., Roberts, C.N., Leng, M.J., and Türkes, M. A high-resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate. Geology 34, (2006). 361364.CrossRefGoogle Scholar
Kaniewski, D., Paulissen, E., De Laet, V., Dossche, K., and Waelkens, M. A high resolution Late Holocene landscape ecological history inferred from an intramontane basin in the Western Taurus Mountains, Turkey. Quaternary Science Reviews 26, (2007). 22012218.CrossRefGoogle Scholar
Kaufman, A., Wasserburg, G.J., Porcelli, D., Bar-Matthews, M., Ayalon, A., and Halicz, L. U–Th isotope systematics from the Soreq cave, Israel and climatic correlations. Earth and Planetary Science Letters 156, (1998). 141155.CrossRefGoogle Scholar
Kim, S.-T., and O'Neil, J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, (1997). 34613475.CrossRefGoogle Scholar
Kontopoulos, N., and Avramidis, P. A late Holocene record of environmental changes from the Aliki lagoon, Egion, North Peloponnesus, Greece. Quaternary International 111, (2003). 7590.CrossRefGoogle Scholar
Kouli, K. Vegetation development and human activities in Attiki (SE Greece) during the last 5,000 years. Vegetation History Archaeobotany 21, (2011). 267278.CrossRefGoogle Scholar
Kraft, J.C., Rapp, G.R. Jr., and Aschenbrenner, S.E. Late Holocene palaeogeomorphic reconstructions in the area of the Bay of Navarino: Sandy Pylos. Journal of Archaeological Science 7, (1980). 187210.CrossRefGoogle Scholar
Kutiel, H., and Benaroch, Y. North Sea-Caspian pattern (NCP) — an upper level atmospheric teleconnection affecting the Eastern Mediterranean: identification and definition. Theoretical and Applied Climatology 71, (2002). 1728.CrossRefGoogle Scholar
Kutiel, H., Maheras, P., Türkeş, M., and Paz, S. North Sea–Caspian Pattern (NCP) — an upper level atmospheric teleconnection affecting the eastern Mediterranean — implications on the regional climate. Theoretical and Applied Climatology 72, (2002). 173192.CrossRefGoogle Scholar
Lachniet, M.S. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28, (2009). 412432.CrossRefGoogle Scholar
Lambert, W.J., and Aharon, P. Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: implications for speleothem δ13C assessments. Geochimica et Cosmochimica Acta 75, (2011). 753768.CrossRefGoogle Scholar
Lamy, F., Arz, H.W., Bond, G.C., Bahr, A., and Pätzold, J. Multicentennial-scale hydrological changes in the Black Sea and northern Red Sea during the Holocene and the Arctic/North Atlantic Oscillation. Paleoceanography 21, (2006). PA1008 CrossRefGoogle Scholar
Linge, H., Baker, A., Andersson, C., and Lauritzen, S.-. Variability in luminescent lamination and initial 230Th/232Th activity ratios in a late Holocene stalagmite from northern Norway. Quaternary Geochronology 4, (2009). 181192.CrossRefGoogle Scholar
Ludwig, K.R., and Titterington, D.M. Calculation of 230Th U isochrons, ages, and errors. Geochimica et Cosmochimica Acta 58, (1994). 50315042.CrossRefGoogle Scholar
McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quaternary Science Reviews 23, (2004). 901918.CrossRefGoogle Scholar
McDermott, F., Atkinson, T.C., Fairchild, I.J., Baldini, L.M., and Mattey, D.P. A first evaluation of the spatial gradients in δ18O recorded by European Holocene speleothems. Global and Planetary Change 79, (2011). 275287.CrossRefGoogle Scholar
Merdenisianos, C. The cave of Kapsia at Mantinia and its anthropological findings. (2005). Hellenic Speleological Society, Google Scholar
Mickler, P.J., Banner, J.L., Stern, L., Asmerom, Y., Edwards, R.L., and Ito, E. Stable isotope variations in modern tropical speleothems: evaluating equilibrium vs. kinetic isotope effects. Geochimica et Cosmochimica Acta 68, (2004). 43814393.CrossRefGoogle Scholar
Mickler, P.J., Stern, L.A., and Banner, J.L. Large kinetic isotope effects in modern speleothems. Bulletin of the Geological Society of America 118, (2006). 6581.CrossRefGoogle Scholar
Orland, I.J., Bar-Matthews, M., Kita, N.T., Ayalon, A., Matthews, A., and Valley, J.W. Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quaternary Research 71, (2009). 2735.CrossRefGoogle Scholar
Parker, C. Arkadian landscapes. Rosetta 1, (2006). 1021.Google Scholar
Pitsios, T. Η ανθρωπολογική μελέτη των σκελετικών ευρημάτων αρχαιολογικών ανασκαφών. Ανθρωπολογικά 6, (1984). 4151.Google Scholar
Pitsios, T., Ioannou, I., and Merdenisianos, K. 5th International Congress on Cave Development, Evolution and Environment. Deltion ESE vol. XXI, (1995). 201 (Athens) Google Scholar
Psathi, E. Σπήλαιο Κάψια. Archaeologicon Deltion 56–59, 2001–2004 (2004). 522 Google Scholar
Richards, D.A., and Dorale, J.A. Uranium-series chronology and environmental applications of speleothems. Reviews in Mineralogy and Geochemistry 52, (2003). 407460.CrossRefGoogle Scholar
Roberts, N., Reed, J.M., Leng, M.J., Kuzucuoglu, C., Fontugne, M., Bertaux, J., Woldring, H., Bottema, S., Black, S., Hunt, E., and Karabiyikoglu, M. The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. The Holocene 11, (2001). 721736.CrossRefGoogle Scholar
Roberts, N., Jones, M.D., Benkaddour, A., Eastwood, W.J., Filippi, M.L., Frogley, M.R., Lamb, H.F., Leng, M.J., Reed, J.M., Stein, M., Stevens, L., Valero-García�s, B., and Zanchetta, G. Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: the ISOMED synthesis. Quaternary Science Reviews 27, (2008). 24262441.CrossRefGoogle Scholar
Roberts, N., Eastwood, W.J., Kuzucuoğlu, C., Fiorentino, G., and Caracuta, V. Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. The Holocene 21, (2011). 147162.CrossRefGoogle Scholar
Schilman, B., Almogi-Labin, A., Bar-Matthews, M., Labeyrie, L., Paterne, M., and Luz, B. Long- and short-term carbon fluctuations in the Eastern Mediterranean during the late Holocene. Geology 29, (2001). 10991102.2.0.CO;2>CrossRefGoogle Scholar
Schilman, B., Almogi-Labin, A., Bar-Matthews, M., and Luz, B. Late Holocene productivity and hydrographic variability in the eastern Mediterranean inferred from benthic foraminiferal stable isotopes. Paleoceanography 18, (2003). CrossRefGoogle Scholar
Thiébault, F., Fleury, J.J., Clément, B., and Dégardin, J.M. Paleogeographic and paleotectonic implications of clay mineral distribution in late Jurassic–early Cretaceous sediments of the Pindos–Olonos and Beotian Basins, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 108, (1994). 2340.CrossRefGoogle Scholar
Thornthwaite, C.W. The measurement of potential evapotranspiration. (1954). Mather, Seabrook, NJ. (225 pp.)Google Scholar
Torrence, C., and Compo, G.P. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79, (1998). 6178.2.0.CO;2>CrossRefGoogle Scholar
Tremaine, D.M., Froelich, P.N., and Wang, Y. Speleothem calref farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochimica et Cosmochimica Acta 75, (2011). 49294950.CrossRefGoogle Scholar
Triantaphyllou, M.V., Kouli, K., Tsourou, T., Koukousioura, O., Pavlopoulos, K., and Dermitzakis, M.D. Paleoenvironmental changes since 3000 BC in the coastal marsh of Vravron (Attica, SE Greece). Quaternary International 216, (2010). 1422.CrossRefGoogle Scholar
Türkeş, M., and Erlat, E. Precipitation changes and variability in Turkey linked to the North Atlantic oscillation during the period 1930–2000. International Journal of Climatology 23, (2003). 17711796.CrossRefGoogle Scholar
Unkel, I., Schimmelmann, A., Shriner, C., Forsén, J., Heymann, C., and Brückner, H. The environmental history of the last 6500 years in the Asea Valley (Peloponnese, Greece) and its linkage to the local archaeological record. Zeitschrift für Geomorphologie (2013). (in press) Google Scholar
Urban, B., and Fuchs, M. Late Pleistocene vegetation of the basin of Phlious, NE-Peloponnese, Greece. Review of Palaeobotany and Palynology 137, (2005). 1529.CrossRefGoogle Scholar
Verheyden, S., Nader, F.H., Cheng, H.J., Edwards, L.R., and Swennen, R. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita Cave, Lebanon. Quaternary Research 70, (2008). 368381.CrossRefGoogle Scholar
Wick, L., Lemcke, G., and Sturm, M. Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene 13, (2003). 665675.CrossRefGoogle Scholar
Zanchetta, G., Drysdale, R.N., Hellstrom, J.C., Fallick, A.E., Isola, I., Gagan, M.K., and Pareschi, M.T. Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia cave (Central Italy). Quaternary Science Reviews 26, (2007). 279286.CrossRefGoogle Scholar
Zangger, E., Timpson, M.E., Yazvenko, S.B., Kuhnke, F., and Knauss, J. The Pylos regional archaeological project: part II: landscape evolution and site preservation. Hesperia 66, (1997). 549641.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E., and Halicz, L. Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: implications for paleoclimate research in semiarid regions. Geochimica et Cosmochimica Acta 60, (1996). 337347.CrossRefGoogle Scholar
Caseldine, C.J., and Turney, C. The bigger picture: towards integrating palaeoclimate and environmental data with a history of societal change. Journal of Quaternary Science 25, (2010). 8893.CrossRefGoogle Scholar
Fleitmann, D., Burns, S.J., Neff, U., Mudelsee, M., Mangini, A., and Matter, A. Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quaternary Science Reviews 23, (2004). 935945.CrossRefGoogle Scholar
Kaniewski, D., Paulissen, E., Van Campo, E., Al-Maqdissi, M., Bretschneider, J., and Van Lerberghe, K. Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes. Proceedings of the National Academy of Sciences of the United States of America 105, (2008). 1394113946.CrossRefGoogle ScholarPubMed

Finné et al. supplementary material

Supplementary Material 1

File 17 KB

Finné et al. supplementary material

Supplementary Material 2

PDF 212 KB

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 120 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Speleothem evidence for late Holocene climate variability and floods in Southern Greece
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Speleothem evidence for late Holocene climate variability and floods in Southern Greece
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Speleothem evidence for late Holocene climate variability and floods in Southern Greece
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *