Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T11:46:21.257Z Has data issue: false hasContentIssue false

Reinterpretation of Late Quaternary Sediment Chronology of Lake Biwa, Japan, from Correlation with Marine Glacial-Interglacial Cycles

Published online by Cambridge University Press:  20 January 2017

Philip A. Meyers
Affiliation:
Department of Geological Sciences and Center for Great Lakes and Aquatic Sciences, University of Michigan, Ann Arbor, Michigan 48109-1063
Keiji Takemura
Affiliation:
Beppu Geophysical Research Laboratory, Kyoto University, Noguchibaru, Beppu 874, Japan
Shoji Horie
Affiliation:
Beppu Geophysical Research Laboratory, Kyoto University, Noguchibaru, Beppu 874, Japan

Abstract

A review of published stratigraphic records of pollen, sediment grain size, diatoms, and organic matter composition from Lake Biwa, Japan, identifies four pre-Holocene episodes of milder climate, increased surface runoff, and enhanced aquatic productivity, indicating intervals of warmer and wetter conditions which are interpreted as being interglacial. Correlation of these episodes to times of marine interglacial periods revises the age scale of the Lake Biwa sediment sequence which has been based on fission-track dating. The revised chronostratigraphic scale proposes an age of ca. 430,000 yr B.P. for the base of the 250-m-thick T Bed instead of the former age of ca. 700,000 yr B.P.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. P. (1988). Correlations of the Clear Lake, California, core CL-73-4 pollen sequence with other long climate records. In “Late Quaternary Climate, Tectonism, and Sedimentation in Clear Lake, Northern California Coast Ranges” (Sims, J. D., Ed.), pp. 8195. U. S. Geological Society Special Paper 214, Boulder.Google Scholar
Barnola, J. M. Raynaud, D. Korotkevich, Y. S., and Lorius, C. (1987). Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329, 408414.CrossRefGoogle Scholar
Chinzei, K. Fujioka, K. Kitazato, H. Koizumi, I. Oba, T. Okada, H. Sakai, T., and Tanimura, Y. (1987). Postglacial environmental change of the Pacific Ocean off the coasts of central Japan. Marine Micropaleontology 11, 273291.CrossRefGoogle Scholar
Fuji, N. (1980). Vegelational change in the last 100,000 years from Lake Biwa, Japan. Fourth International Palynological Conference, Lucknow 3, 90103.Google Scholar
Fuji, N. (1983). Palynological study of 200-meter core samples from Lake Biwa, central Japan, I. The palaeovegetational and palaeocli-matic changes during the last 600,000 years. Transactions and Pro~ ceedings of the Paleontological Society of Japan 132, 230252.Google Scholar
Fuji, N. (1986). Palynological study of 200-meter core samples from Lake Biwa, central Japan. II. The palaeovegetational and palaeocli-matic changes during the ca. 250,000-100,000 years B.P. Transactions and Proceedings of the Palaeontological Society of Japan 144, 490515.Google Scholar
Fuji, N. (1988). Palaeovegetation and palaeoclimate changes around Lake Biwa, Japan, during the last ca. 3 million years. Quaternary Science Reviews 7, 2128.Google Scholar
Heusser, L. E. (1989). Northeast Asian climatic change over the last 140,000 years inferred from pollen in marine cores taken off the Pacific coast of Japan. In “Paleoclimatology and Paleometeorology” (Leinen, M. and Sarnthein, M., Eds.), pp. 665692. Kluwer, Dordrecht.Google Scholar
Heusser, L. E., and Morley, J. J. (1985). Pollen and radiolarian records from deep-sea core RC14-103: Climatic reconstructions of northeast Japan and northwest Pacific for the last 90,000 years. Quaternary Research 2A, 6072.CrossRefGoogle Scholar
Heusser, L. E., and Morley, J. J. (1990). Climatic change at the end of the last glaeiation in Japan inferred from pollen in three cores from the northwest Pacific Ocean. Quaternary Research 34, 101110.Google Scholar
Hirao, F. Iwashima, T., and Yamamoto, R. (1984). Meteorology. In “Lake Biwa” (Horie, S., Ed.), pp. 139164. Junk, Dordrecht.Google Scholar
Hollander, D. J., and McKenzie, J. A. (1991). CO2 control on carbon-isotope fractionation during aqueous photosynthesis: A paleo-pCO 2barometer. Geology, 19, 929932.Google Scholar
Horie, S. Mitamura, O. Kanari, S.. Miyake, H. Yamamoto, A., and Fuji, N. (1971). Paleolimnological study on lacustrine sediments of Lake Biwa-ko. In “Contribution from the Geological Institute, Kanazawa University,” New Series No. 18, pp. 745762. [in Japanese] Google Scholar
Horie, S. (1984). “Lake Biwa.” Junk, Dordrecht.Google Scholar
Imbrie, J. Hayes, J. D. Martinson, D. G. Mclntyre, A. Mix, A. C Morley, J. J. Pisias, N. G. Prell, W. G., and Shackleton, N. J. (1984). The orbital theory of Pleistocene climate: Support from a revised chronology of the 18O record. In “Milankovich and Climate” (Berger, A. Imbrie, J. Hayes, J. Kukla, G., and Saltzman, B., Eds.), Part I, pp. 269305. D. Reidel, Hingham, MA.Google Scholar
Ishiwatari, R., and Ogura, K. (1984). Organic geochemistry. In “Lake Biwa” (Horie, S., Ed.), pp. 557577. Junk, Dordrecht.Google Scholar
Ishiwatari, R., and Uzaki, M. (1987). Diagenetic changes of lignin compounds in a more than 0.6 million-year-old lacustrine sediment (Lake Biwa, Japan). Geochimca et Cosmochimica Acta 51, 321328.Google Scholar
Kashiwaya, K. Yamamoto, A., and Fukuyama, K. (1987). Time variations of erosional force and grain size in Pleistocene lake sediments. Quaternary Research 28, 6168.Google Scholar
Kawamura, K., and Ishiwatari, R. (1984). Fatty acid geochemistry of a 200 m sediment core from Lake Biwa, Japan. Early diagenesis and paleoenvironmental information. Geochimica et Cosmochimica Acta 48, 251266.CrossRefGoogle Scholar
McKenzie, J. A. (1985). Carbon isotopes and productivity in the lacustrine and marine environment, In “Chemical Processes in Lakes” (Stumm, W., Ed.), pp. 99118. Wiley, New York.Google Scholar
Mori, S., and Horie, S. (1975). Diatoms in a 197.2 meters core sample from Lake Biwa-ko. Proceedings of the Japanese Academy 51, 765679. CrossRefGoogle Scholar
Mori, S., and Horie, S. (1984). Diatom analysis. In “Lake Biwa” (Horie, S., Ed.), pp. 531543. Junk, Dordrecht.Google Scholar
Morley, I. J., and Heusser, L. E. (1989). Late Quaternary atmospheric and oceanographic variations in the western Pacific inferred from pollen and radiolarian analyses. Quaternary Science Reviews 8, 263276.CrossRefGoogle Scholar
Nakai, N. (1972). Carbon isotopic variation and the paleoclimate of sediments from Lake Biwa. Proceedings of the Japanese Academy 48, 516521.CrossRefGoogle Scholar
Nakai, N. (1973). Carbon isotopic composition of Lake Biwa-ko sediments and the environmental change in the depositional history. Japanese Journal of Limnology 34, 8996.Google Scholar
Nakai, N. (1986). Paleoenvironmental features of Lake Biwa deduced from carbon isotope compositions and organic C/N ratios of the upper 800-m sample of 1400-m cored column. Proceedings of the Japanese Academy 62B, 279282.CrossRefGoogle Scholar
Nishimuxa, S. (1984). Radiometric age on lacustrine deposits. In “Lake Biwa” (Horie, S., Ed.), pp. 387397. Junk, Dordrecht.Google Scholar
Oba, T. Kato, M. Kitazato, H. Koizumi, I. Omura, A. Sakai, T., and Takayama, T. (1991). Paleoenvironmental changes in the Japan Sea during the last 85,000 years. Paleoceanography 6, 499518.Google Scholar
Rea, D. K. Bourbonniere, R. A., and Meyers, P. A. (1980). Southern Lake Michigan sediments: Changes in accumulation rate, mineralogy and organic content. Journal of Great Lakes Research 6, 321330.Google Scholar
Shackleton, N. J. Hall, M. A. Line, J., and Shuxi, C. (1983). Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature 306, 319322.Google Scholar
Shackleton, N. J., and Pisias, N. G. (1985). Atmospheric carbon dioxide, orbital forcing, and climate. In “The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present” (Sundquist, E. T. and Broecker, W. S., Eds.), pp. 303317. American Geophysical Union, Washington.Google Scholar
Sohma, K. (1984). Two late-Quaternary pollen diagrams from northeast Japan. Scientific Reports of Tohoku University (Biology) 38, 351369.Google Scholar
Stuiver, M. (1975). Climate versus changes in 13C content of the organic component of lake sediments during the Quaternary. Quaternary Research 5, 251262.Google Scholar
Taishi, H. Yamamoto, A., and Kanari, S. (1986). Age-scaling for the uppermost clayey layer in the 1400 m core sample from Lake Biwa—A preliminary study. Japanese Journal of Limnology 47, 101108.Google Scholar
Takemura, K. (1990). Tectonic and climatic record of the Lake Biwa, Japan, region provided by the sediments deposited since Pliocene times. Paiaeogeography, Paleoclimatology, Palaeoecology 78, 185193.CrossRefGoogle Scholar
Takemura, K., and Yokoyama, T. (1989). Sedimentary environments inferred from lithofacies of the Lake Biwa, 1,400 m core sample, Japan. Japanese Journal of Limnology SO, 247254.Google Scholar
Thompson, P. R. (1981). Planktonic foraminifera in the western North Pacific during the past 150,000 years: Comparison of modern and fossil assemblages. Paiaeogeography, Palaeoclimatology, Palaeoecology 35, 241279.Google Scholar
Torii, M. Shibuya, H. Hayashida, A. Katsura, I. Yoshida, S. Ta-gami, T. Otofuji, Y. Maeda, Y. Sasajima, S., and Horie, S. (1986). Magnetostratigraphy of sub-bottom sediments from Lake Biwa. Proceedings of the Japanese Academy 62, 333336.Google Scholar
Tsukada, M. (1983). Vegetation and climate during the last glacial maximum in Japan. Quaternary Research 19, 212235.Google Scholar
Tsukada, M. (1985). Map of vegetation during the last glacial maximum in Japan. Quaternary Research 23, 369381.CrossRefGoogle Scholar
Yamamoto, A. (1976). Paleoprecipitational change estimated from the grain size variations in the 200m-long core from Lake Biwa. In “Pa-leolimnology of Lake Biwa and the Japanese Pleistocene” (Horie, S., Ed.), Vol. 4, pp. 179203.Google Scholar
Yamamoto, A, (1984). Grain size variation. In “Lake Biwa” (Horie, S., Ed.), pp. 439459. Junk, Dordrecht.Google Scholar
Yasuda, Y. (1990). Monsoon fluctuations and cultural changes during the last glacial age in Japan. Japan Review 1, 113152.Google Scholar
Yokoyama, T. (1984). Stratigraphy of the Quaternary system around Lake Biwa and geohistory of the ancient Lake Biwa. In “Lake Biwa” (Horie, S., Ed.), pp. 43128. Junk, Dordrecht.Google Scholar