Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 0.349 Render date: 2021-03-07T10:06:31.236Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Reconstruction of the hydrologic history of a shallow Patagonian steppe lake during the past 700 yr, using chemical, geologic, and biological proxies

Published online by Cambridge University Press:  24 March 2017

Corina Coviaga
Affiliation:
Departamento de Ecología, Instituto de Investigación en Biodiversidad y Medioambiente (INIBIOMA-CONICET-UNComahue), Quintral 1250, 8400 Bariloche, Argentina
Andrea Rizzo
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Comisión Nacional de Energía Atómica, Av. Bustillo km 9.5, 8400 Bariloche, Argentina Centro Científico Tecnológico–CONICET–Patagonia Norte, 8400 Bariloche, Argentina
Patricia Pérez
Affiliation:
Laboratorio de Fotobiología, Instituto de Investigación en Biodiversidad y Medioambiente (INIBIOMA-CONICET-UNComahue), Quintral 1250, 8400 Bariloche, Argentina
Romina Daga
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Comisión Nacional de Energía Atómica, Av. Bustillo km 9.5, 8400 Bariloche, Argentina Centro Científico Tecnológico–CONICET–Patagonia Norte, 8400 Bariloche, Argentina
Daniel Poiré
Affiliation:
Centro de Investigaciones Geológicas (UNLP-CONICET), 1 n° 644, 1900 La Plata, Argentina
Gabriela Cusminsky
Affiliation:
Departamento de Ecología, Instituto de Investigación en Biodiversidad y Medioambiente (INIBIOMA-CONICET-UNComahue), Quintral 1250, 8400 Bariloche, Argentina
Sergio Ribeiro Guevara
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Comisión Nacional de Energía Atómica, Av. Bustillo km 9.5, 8400 Bariloche, Argentina
Corresponding
E-mail address:

Abstract

The limnological conditions during the past 700 yr were reconstructed based on multiproxy analysis of a short sedimentary sequence from El Toro Lake (~40°S, 70°W). Mineralogical and geochemical features, as well as ostracods and chironomids, record hydrologic changes in the El Toro Lake basin. The ostracod Limnocythere rionegroensis var. 1, a reliable indicator of high salinity, and Eucypris fontana, a euryhaline species with preferences for moderate-salinity waters, are studied as paleolimnological proxies. The chironomid fauna indicates less saline conditions in the mid-twentieth century. These salinity changes are interpreted in terms of negative–positive hydrologic balance. High lake level and low salinity between AD 1500 and 1700 match with the wetter and colder climate during the second pulse of the Little Ice Age in northern Patagonia. High-salinity conditions occurred during the late nineteenth century, corresponding to the driest period during the past 400 yr in northeastern Patagonia. An increase in the precipitation around the middle of the twentieth century, in contrast to the records from the Chilean side of the mountains, correlates with a positive phase of the Southern Annular Mode. This is associated, in turn, with a strengthening, poleward shift of the midlatitude westerlies, possibly enhancing easterly moist air flows into central-north Patagonia.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Agosta, E., Compagnucci, R., Ariztegui, D., 2015. Precipitation linked to Atlantic moisture transport: clues to interpret Patagonian palaeoclimate. Climate Research 62, 219240.CrossRefGoogle Scholar
Amigo, A., Lara, L., Smith, V., 2013. Holocene record of large explosive eruptions from Chaitén and Michinmahuida Volcanoes, Chile. Andean Geology 40, 227248.CrossRefGoogle Scholar
Aravena, J.C., Luckman, B., 2009. Spatio-temporal rainfall patterns in southern South America. International Journal of Climatology 29, 21062120.CrossRefGoogle Scholar
Ariztegui, D., Bösch, P., Davaud, E., 2007. Dominant ENSO frequencies during the Little Ice Age in northern Patagonia: the varved record of proglacial Lago Frías, Argentina. Quaternary International 161, 4655.CrossRefGoogle Scholar
Battarbee, R.W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews 19, 107124.CrossRefGoogle Scholar
Berman, A.L., Silvestri, G., Compagnucci, R., 2012. Eastern Patagonia seasonal precipitation: influence of Southern Hemisphere circulation and links with subtropical South American precipitation. Journal of Climatology 25, 67816795.CrossRefGoogle Scholar
Bertrand, S., Boës, X., Castiaux, J., Charlet, F., Urrutia, R., Espinoza, C., Lepoint, G., Charlier, B., Fagel, N., 2005. Temporal evolution of sediment supply in Lago Puyehue (southern Chile) during the last 600 yr and its climatic significance. Quaternary Research 64, 163175.CrossRefGoogle Scholar
Bertrand, S., Daga, R., Bedert, R, Fontijn, K., 2014. Deposition of the 2011–2012 Cordón Caulle tephra (Chile, 40°S) in lake sediments: implications for tephrochronology and volcanology. Journal of Geophysical Research: Earth Surface 119, 25552573.Google Scholar
Boës, X., Fagel, N., 2008. Relationships between southern Chilean varved lake sediments, precipitation and ENSO for the last 600 years. Journal of Paleolimnology 39, 237252.CrossRefGoogle Scholar
Boës, X., Rydberg, J., Martinez-Cortizas, A., Bindler, R., Renberg, I., 2011. Evaluation of conservative lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake sediments. Journal of Paleolimnology 46, 7587.CrossRefGoogle Scholar
Bradbury, J.P., Grosjean, M., Stine, S., Sylvestre, F., 2001. Full and late glacial records along the PEP1 transect: their role in developing interhemispheric paleoclimate interactions. In Markgraf, V. (Ed.), Interhemispheric Climate Linkages. Academic Press, San Diego, CA, pp. 265292.CrossRefGoogle Scholar
Brodersen, K.P., Anderson, N.J., 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47, 11371157.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Bunbury, J., Gajewski, K., 2012. Temperatures of the past 2000 years inferred from lake sediments, southwest Yukon Territory, Canada. Quaternary Research 77, 355367.CrossRefGoogle Scholar
Cartwright, A., Quade, J., Stine, S., Adams, K.D., Broecker, W., Cheng, H., 2011. Chronostratigraphy and lake-level changes of Laguna Cari-Laufquén, Río Negro, Argentina. Quaternary Research 76, 430440.CrossRefGoogle Scholar
Clarke, K.R., Gorley, R.N., 2005. PRIMER v.6: User Manual/Tutorial. PRIMER-E, Plymouth, UK.Google Scholar
Clarke, K.R., Warwick, R.M., 2001. Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, Plymouth, UK.Google Scholar
Coffman, W.B., Ferrington, L.C., 1996. Chironomidae. In Merrit, W., Cummings K.W. (Eds.), An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque, IA, pp. 551643.Google Scholar
Cohen, A.S., 2003. Geochemical archives in lake deposits. In, Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, New York, pp. 241272.Google Scholar
Coviaga, C., 2016. Ostrácodos lacustres actuales de Patagonia Norte y su correspondencia con secuencias holocénicas. PhD dissertation, University National of Comahue, Bariloche, Argentina.Google Scholar
Cucchi, R., Espejo, P., González, R., 1998. Hoja Geológica 4169-I Piedra del Águila 1:250.000. Boletín No. 242. Servicio Geológico Minero Argentino, Buenos Aires, Argentina.Google Scholar
Cusminsky, G., Schwalb, A., Pérez, A.P., Pineda, D., Viehberg, F., Whatley, R., Markgraf, V., Gilli, A., Ariztegui, D., Anselmetti, F.S., 2011. Late quaternary environmental changes in Patagonia as inferred from lacustrine fossil and extant ostracods. Biological Journal of the Linnean Society 103, 397408.CrossRefGoogle Scholar
Cusminsky, G.C., Pérez, P.A., Schwalb, A., Whatley, R., 2005. Recent lacustrine ostracods from Patagonia, Argentina. Revista Española de Micropaleontología 37, 431450.Google Scholar
Cusminsky, G.C., Whatley, R.C., 1996. Quaternary non-marine ostracods from lake beds in northern Patagonia. Revista Española de Paleontología 11, 143154.Google Scholar
Daga, R., Bertrand, S., Bedert, R., Ribeiro Guevara, S., Ghazoui, Z., 2013. Lacustrine records of the June 2011 eruption of the Puyehue-Cordón Caulle Volcanic Complex, Central Chile (40°30’S, 72°10’W). Geophysical Research Abstracts 15, EGU 2013–1045.Google Scholar
Daga, R., Ribeiro Guevara, S., Poiré, D., Arribére, M.A., 2014. Characterization of tephras dispersed by recent eruptions of volcanoes Calbuco (1961), Chaitén (2008), and Cordón Caulle complex (1960 and 2011), in northern Patagonia. Journal of South American Earth Sciences 49, 114.CrossRefGoogle Scholar
Daga, R., Ribeiro Guevara, S., Sánchez, M.L., Arribére, M., 2006. Geochemical characterization of volcanic ashes from recent events in northern Patagonia Andean Range by INAA. Journal of Radioanalytical and Nuclear Chemistry 270, 677694.CrossRefGoogle Scholar
Daga, R., Ribeiro Guevara, S., Sánchez, M.L., Arribére, M., 2010. Tephrochronology of recent events in the Andean Range (northern Patagonia): spatial distribution and provenance of lacustrine ash layers in the Nahuel Huapi National Park. Journal of Quaternary Science 25, 11131123.CrossRefGoogle Scholar
De Batist, M., Fagel, N., Loutre, M.F., Chapron, E., 2008. A 17,900-year multi-proxy lacustrine record of Lago Puyehue (Chilean Lake District): introduction. Journal of Paleolimnology 39, 151161.CrossRefGoogle Scholar
De Deckker, P., 2002. Ostracod palaeoecology. In Holmes, J.A., Chivas, A.R. (Eds.), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph Series Vol. 131. American Geophysical Union, Washington, DC, pp. 121134.CrossRefGoogle Scholar
Degu, A.M., Hossain, F., Nigoyi, D., Pielke, R. Sr., Shepherd, J.M., Voisin, N., Chronis, T., 2011. The influence of large dams on surrounding climate and precipitation patterns. Geophysical Research Letters 38, L04405. http://dx.doi.org/10.1029/2010GL046482.CrossRefGoogle Scholar
DeMaster, D.J., 1981. The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta 45, 17151732.CrossRefGoogle Scholar
Departamento Provincial de Aguas (DPA). 2012. Informe Lagunas Carri-Laufquen. DPA, Provincia de Río Negro, Argentina. http://www.dpa.gov.ar/clima/informes/Carri-Laufquen.pdf.Google Scholar
Eggermont, H., Heiri, O., Verschuren, D., 2006. Fossil Chirronomidae (Insecta: Diptera) as quantitative indicators of past salinity in African lakes. Quaternary Science Reviews 25, 19661994.CrossRefGoogle Scholar
Epler, J.H., 2001. Identification Manual for the Larval Chironomidae (Diptera) of North and South Carolina. St. Johns River Water Management District, Palatka, FL.Google Scholar
Flower, R.J., Ryves, D.B., 2009. Diatom preservation: differential preservation of sedimentary diatoms in two saline lakes. Acta Botanica Croatica 68, 381399.Google Scholar
Forester, R.M., 1991. Ostracode assemblages from springs in the western United States: implications for paleohydrology. Memoirs of the Entomological Society of Canada 155, 181201.CrossRefGoogle Scholar
Fuentes, M.C., Donato, M., 2014. Review of taxonomic status of Polypedilum quinquesetosum (Edwards, 1931) (Diptera, Chironomidae). Revista de la Sociedad Entomológica Argentina 73, 139144.Google Scholar
Garleff, K., Reichert, T., Sage, M., Schäbitz, F., Stein, B., 1994). Períodos morfodinámicos y el paleoclima en el norte de la Patagonia durante los últimos 13.000 años. Second Annual Meeting Project 341 IGCP/IUGS UNESCO. Southern Hemisphere Paleo and Neoclimates. Revista del Museo de Historia Natural de San Rafael 12, 217–228.Google Scholar
Garreaud, R., Lopez, P., Minvielle, M., Rojas, M., 2013. Large-scale control on the Patagonian climate. Journal of Climate 26, 215230.CrossRefGoogle Scholar
Gerlach, D., Frey, F., Moreno-Roa, H., López-Escobar, L., 1988. Recent volcanism in the Puyehue–Cordon Caulle region, southern Andes. Chile (40.5°S): petrogenesis of evolved lavas. Journal of Petrology 29, 333382.Google Scholar
González-Ferrán, O., 1995. Volcanes de Chile. Instituto Geográfico Militar de Chile, Santiago, Chile.Google Scholar
Grimm, E.C., 1987. A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.CrossRefGoogle Scholar
Grimm, E.C., 1991. TILIA & TILIA.GRAPH. Illinois State Museum, Springfield, IL.Google Scholar
Guilizzoni, P., Massaferro, J., Lami, A., Piovano, A.L., Ribeiro Guevara, S., Formica, S.M., Daga, R., Rizzo, A., Gerli, S., 2009. Palaeolimnology of Lake Hess (Patagonia, Argentina): multi-proxy analyses of short sediment cores. Hydrobiologia 631, 289302.CrossRefGoogle Scholar
Haberzettl, T., Fey, M., Lücke, A., Maidana, N., Mayr, C., Ohlendorf, C., Schäbitz, F., Schleser, G.H., Wille, M., Zolitschka, B., 2005. Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, southern Patagonia (Santa Cruz, Argentina). Journal of Paleolimnology 33, 283302. http://dx.doi.org/10.1007/s10933-004-5331-z.CrossRefGoogle Scholar
Heinrichs, M.L., Walker, I.R., 2006. Fossil midges and palaeosalinity: potential as indicators of hydrological balance and sea-level change. Quaternary Science Reviews 25, 1984–1965.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.CrossRefGoogle Scholar
Hildreth, W., Drake, R.E., 1992. Volcán Quizapu, Chilean Andes. Bulletin of Volcanology 54, 93125.CrossRefGoogle Scholar
Hogg, A., Hua, Q., Blackwell, P., Niu, M., Buck, C., Guilderson, T., Heaton, T., et al. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 18891903.CrossRefGoogle Scholar
Holmes, J.A., 2001. Ostracoda. In Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Changes Using Lakes Sediments Vol. 4. Zoological Indicators. Kluwer Academic, Dordrecht, the Netherlands, pp. 125151.CrossRefGoogle Scholar
Holmes, J.A., Fothergill, P.A., Street-Perrott, F.A., Perrott, R.A., 1998. A high-resolution Holocene ostracod record from the Sahel zone of northeastern Nigeria. Journal of Paleolimnology 20, 369380.CrossRefGoogle Scholar
Iglesias, V., Whitlock, C., Bianchi, M.M., Villarosa, G., Outes, V., 2012. Climate and local controls of long-term vegetation dynamics in northern Patagonia (Lat 41°S). Quaternary Research 78, 502512.CrossRefGoogle Scholar
Jenny, B., Valero-Garcés, B.L., Urrutia, R., Kelts, K., Veit, H., Appleby, P.G., Geyh, M., 2002. Moisture changes and fluctuations of the Westerlies in Mediterranean central Chile during the last 2000 years: the Laguna Aculeo record (33°50′S). Quaternary International 87, 318.CrossRefGoogle Scholar
Joshi, S.R., Shukla, B.S., 1991. Ab initio derivation of formulations for 210Pb dating of sediments. Journal of Radioanalytical and Nuclear Chemistry 148, 7379.CrossRefGoogle Scholar
Keatings, K.W., Hawkes, I., Holmes, J.A., Flower, R.J., Leng, M.J., Abu-Zied, R.H., Lord, A.R., 2007. Evaluation of ostracod-based palaeoenvironmental reconstruction with instrumental data from the arid Faiyum Depression, Egypt. Journal of Paleolimnology 38, 261283.CrossRefGoogle Scholar
Laprida, C., Massaferro, J., Ramón Mercau, J., Cusminsky, G., 2014. Paleobioindicadores del Fin del Mundo: ostrácodos y quironómidos del extremo sur de Sudamérica en ambientes lacustres cuaternarios. Latin American Journal of Sedimentology and Basin Analysis 21, 97117.Google Scholar
Lara, A., Villalba, R., 1993. A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260, 11041106.CrossRefGoogle ScholarPubMed
Lara, L.E., Moreno, H., Naranjo, J., Matthews, S., Pérez De Arce, C., 2006. Magmatic evolution of the Puyehue–Cordón Caulle Volcanic Complex (40° S), southern Andean Volcanic Zone: from shield to unusual rhyolitic fissure volcanism. Journal of Volcanology and Geothermal Research 157, 343366.CrossRefGoogle Scholar
Lara, L.E., Moreno, R., Amigo, A., Hoblitt, R.P., Pierson, T.C., 2013. Late Holocene history of Chaitén Volcano, new evidence for a 17th century eruption. Andean Geology 40, 249261.CrossRefGoogle Scholar
Lara, L.E., Naranjo, J.A., Moreno, H., 2004. Rhyodacitic fissure eruption in southern Andes (Cordón Caulle; 40.5°S) after the 1960 (Mw: 9.5) Chilean earthquake: a structural interpretation. Journal of Volcanology and Geothermal Research 138, 127138.CrossRefGoogle Scholar
Lent, R.M., Lyons, W.B., 2001. Biogeochemistry of silica in Devils Lake: implications for diatom preservation. Journal of Paleolimnology 26, 5366.CrossRefGoogle Scholar
Lowe, D., 2011. Tephrochronology and its application: a review. Quaternary Geochronology 6, 107153.CrossRefGoogle Scholar
Luckman, B.H., Villalba, R., 2001. Assessing the synchroneity of glacier fluctuations in the western cordillera of the Americas during the last millennium. In Markgraf, V. (Ed.), Interhemispheric Climate Linkages. Academic Press, San Diego, CA, pp. 119140.CrossRefGoogle Scholar
Luoto, T.P., 2012. Spatial uniformity in depth optima of midges: evidence from sedimentary archives of shallow Alpine and boreal lakes. Journal of Limnology 71, 228232.CrossRefGoogle Scholar
Mann, M.E., 2002. Medieval Climatic Optimum. In MacCraken, M.C., Perry, J.S. (Eds.), Encyclopedia of Global Environmental Change Vol. 1. The Earth System: Physical and Chemical Dimensions of Global Environmental Change, Wiley, Chichester, UK, pp. 514516.Google Scholar
Markgraf, V., Bradbury, J.P., Schwalb, A., Burns, S.J., Stern, C., Ariztegui, D., Gilli, A., Anselmetti, F.S., Stine, S., Maidana, N., 2003. Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina. Holocene 13, 581591.CrossRefGoogle Scholar
Masiokas, M.H., Villalba, R., Luckman, B.H., Lascano, M.E., Delgado, S., Stepanek, P., 2008. 20th-Century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global and Planetary Change 60, 85100.CrossRefGoogle Scholar
Massaferro, J., Larocque-Tobler, I., Brooks, S.J., Vandergoes, M., Dieffenbacher-Krall, A., Moreno, P., 2014. Quantifying climate change in Huelmo mire (Chile, northwestern Patagonia) during the Last Glacial Termination using a newly develop chironomid-based temperature model. Palaeogeography, Palaeoclimatology, Palaeoecology 399, 214224.CrossRefGoogle Scholar
Massaferro, J., Recasens, C., Larocque-Tobler, I., Zolitschka, B., Maidana, N.I., 2013. Major lake level fluctuations and climate changes for the past 16,000 years as reflected by diatoms and chironomids preserved in the sediment of Laguna Potrok Aike, southern Patagonia. Quaternary Science Reviews 71, 167174.CrossRefGoogle Scholar
Mayr, C., Laprida, C., Lücke, A., Martín, R.S., Massaferro, J., Ramón-Mercau, J., Wissel, H., 2015. Oxygen isotope ratios of chironomids, aquatic macrophytes and ostracods for lake-water isotopic reconstructions – results of a calibration study in Patagonia. Journal of Hydrology 529, 600607.CrossRefGoogle Scholar
Meisch, C., 2000. Freshwater Ostracoda of western and central Europe. In Schwoerbel, J., Zwick, P. (Eds.), Süsswasserfauna von Mitteleuropa 8(3). Spektrum Akademischer Verlag, Heidelberg, Germany, pp. 522.Google Scholar
Mezquita, F., Roca, J.R., Reed, J.M., Wansard, G., 2005. Quantifying species-environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: examples using Iberian data. Palaeogeography, Palaeoclimatology, Palaeoecology 225, 93117.CrossRefGoogle Scholar
Modenutti, B.E., Diéguez, M.C., Segers, H., 1998. A new Keratella from Patagonia. Hydrobiologia 389, 15.CrossRefGoogle Scholar
Moore, D.M., Reynolds, R.C. Jr., 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford.Google Scholar
Moreno, P.I., Vilanova, I., Villa-Martinez, R., Garreaud, R.D., Rojas, M., De Pol-Holz, R., 2014. Southern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millennia. Nature Communications 5, 4375. http://dx.doi.org/10.1038/ncomms5375.CrossRefGoogle ScholarPubMed
Mundo, I.A., Masiokas, M.H., Villalba, R., Morales, M.S., Neukom, R., Le Quesne, C., Urrutia, R.B., Lara, A., 2012. Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina. Climate of the Past 8, 815829.CrossRefGoogle Scholar
Ohlendorf, C., Fey, M., Massaferro, J., Haberzettl, T., Laprida, C., Lücke, A., Maidana, N., et al. 2014. Late Holocene hydrology inferred from lacustrine sediments of Laguna Cháltel (southeastern Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology 411, 229248.CrossRefGoogle Scholar
Palacios-Fest, M.R., Cohen, A.S., Anadón, P., 1994. Use of ostracodes as paleoenviromental tools in the interpretation of ancient lacustrine records. Revista Española de Micropaleontología 9, 145164.Google Scholar
Paruelo, J.M., Beltrán, A., Jobbágy, E., Sala, O.E., Golluscio, R.A., 1998. The climate of Patagonia: General patterns and controls on biotic processes. Ecología Austral 8, 85101.Google Scholar
Pérez, L., Bugja, R., Massaferro, J., Steeb, P., van Geldern, R., Frenzel, P., Brenner, M., Scharf, B., Schwalb, A., 2010. Post-Columbian environmental history of Lago Petén Itzá, Guatemala. Revista Mexicana de Ciencias Geológicas 27, 490507.Google Scholar
Petit-Breuilh Sepúlveda, M.E., 2004. La historia eruptiva de los volcanes hispanoamericanos (siglos XVI al XX). Serie Casa de los Volcanes No. 8. Ed. Servicio de Publicaciones Exmo. Cabildo Insular de Lanzarote, Huelva, Spain.Google Scholar
Piovano, E.L., Ariztegui, D., Moreira, S.D., 2002. Recent environmental changes in Laguna Mar Chiquita (central Argentina): a sedimentary model for a highly variable saline lake. Sedimentology 49, 13711384.CrossRefGoogle Scholar
Quintana, J.M., Aceituno, P., 2012. Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30-43°S. Atmosfera 25, 122.Google Scholar
Ramos, L.Y., Alperin, M., Pérez, A.P., Coviaga, C.A., Schwalb, A., Cusminsky, G.C., 2015. Eucypris fontana (Graf, 1931) (Crustacea, Ostracoda) in permanent environments of Patagonia Argentina: a geometric morphometric approach. Annales de Limnologie - International Journal of Limnology 51, 125138.CrossRefGoogle Scholar
Ramón Mercau, J., Laprida, C., Massaferro, J., Rogora, M., Tartari, G., Maidana, N.I., 2012. Patagonian ostracods as indicators of climate-related hydrological variables: implications for paleoenvironmental reconstructions in southern South America. Hydrobiologia 694, 235251.CrossRefGoogle Scholar
Ribeiro Guevara, S., Arribére, M., 2002. 137Cs dating of sedimentary cores from lakes of Nahuel Huapi National Park, Patagonia, Argentina, historical records and profile measurements. Journal of Radioanalytical and Nuclear Chemistry 252, 3745.CrossRefGoogle Scholar
Ribeiro Guevara, S., Rizzo, A., Sánchez, R., Arribére, M., 2003. 210Pb fluxes in sediment layers sampled from northern Patagonia lakes. Journal of Radioanalytical and Nuclear Chemistry 258, 583595.CrossRefGoogle Scholar
Ribeiro Guevara, S., Rizzo, A., Sánchez, R., Arribére, M., 2005. Heavy metal inputs in northern Patagonia lakes from short sediment core analysis. Journal of Radioanalytical and Nuclear Chemistry 265, 481493.CrossRefGoogle Scholar
Rizzo, A., 2007. Dípteros quironómidos (Insecta) subfósiles y recientes en sedimentos lacustres andino-patagónicos: influencia de los eventos paleoambientales naturales y artificiales. PhD dissertation, University of La Plata, Buenos Aires, Argentina.Google Scholar
Robbins, J.A., Herche, L.R., 1993. Models and uncertainty in 210Pb dating of sediments. Radiochemical Limnology 25, 217222.Google Scholar
Ruprecht, P., Bergantz, G., Cooper, K., Hildreth, W., 2012. The crustal magma storage system of Volcán Quizapu, Chile, and the effect of magma mixing on magma diversity. Journal of Petrology 53, 801840.CrossRefGoogle Scholar
Ryves, D.B., Battarbee, R.W., Juggins, S., Fritz, S.C., Anderson, N.J., 2006. Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland. Limnology and Oceanography 51, 13551368.CrossRefGoogle Scholar
Ryves, D.B., Juggins, S., Fritz, S.C., Battarbee, R.W., 2001. Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 172, 99113.CrossRefGoogle Scholar
Schwalb, A., Burns, S., Cusminsky, G., Kelts, K., Markgraf, V., 2002. Assemblage diversity and isotopic signals of modern ostracodes and host waters from Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 187, 323339.CrossRefGoogle Scholar
Stern, C.R., 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 31, 161206.CrossRefGoogle Scholar
Tartarotti, B., Baffico, G., Temporetti, P., Zagarese, H.E., 2004. Mycosporine-like amino acids in planktonic organisms living under different UV exposure conditions in Patagonian lakes. Journal of Plankton Research 26, 753762.CrossRefGoogle Scholar
Urrutia, R., Araneda, A., Torres, L., Cruces, F., Vivero, C., Torrejón, F., Barra, R., Fagel, N., Scharf, B., 2010. Late Holocene environmental changes inferred from diatom, chironomid, and pollen assemblages in an Andean lake in central Chile, Lake Laja (36°S). Hydrobiologia 648, 207225.CrossRefGoogle Scholar
Verschuren, D., Cumming, B.F., Laird, K.R., 2004. Quantitative reconstruction of past salinity variations in African lakes: assessment of chironomid-based inference models (Insecta: Diptera) in space and time. Canadian Journal of Fisheries and Aquatic Sciences 61, 986998.CrossRefGoogle Scholar
Verschuren, D., Eggermont, H., 2006. Quaternary paleoecology of aquatic Diptera in tropical and Southern Hemisphere regions, with special reference to the Chironomidae. Quaternary Science Reviews 25, 19261947.CrossRefGoogle Scholar
Villalba, R., 1990. Climatic fluctuations in northern Patagonia during the last 1000 years as inferred from tree-ring records. Quaternary Research 34, 346360.CrossRefGoogle Scholar
Villalba, R., 1994. Tree-ring and glacial evidence for the Medieval Warm Epoch and the Little Ice Age in southern South America. Climatic Change 26, 183197.CrossRefGoogle Scholar
Villalba, R., D’Arrigo, R.D., Cook, E.R., Jacoby, G.C., Wiles, G., 2001. Decadal-scale climatic variability along the extratropical western coast of the Americas: evidence from tree-ring records. In Markgraf, V. (Ed.), Interhemispheric Climate Linkages. Academic Press, San Diego, CA, pp. 155172.CrossRefGoogle Scholar
Villalba, R., Grau, H.R., Boninsegna, J.A., Jacoby, G.C., Ripalta, A., 1998. Tree-ring evidence for long-term precipitation changes in subtropical South America. International Journal of Climatology 18, 14631478.3.0.CO;2-A>CrossRefGoogle Scholar
Villalba, R., Lara, A., Boninsegna, J.A., Masiokas, M., Delgado, S., Aravena, J.C., Roig, F., Schmelter, A., Wolodarsky, A., Ripalta, A., 2003. Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Climatic Change 59, 177232.CrossRefGoogle Scholar
Villalba, R., Veblen, T.T., 1996. A tree-ring record of dry spring-wet summer events in the forest-steppe ecotone, northern Patagonia, Argentina. In Dean, J.S., Meko, D.M., Swetnam, T.W. (Eds.), Tree Rings, Environment and Humanity: Proceedings of the International Conference, Tucson, Arizona, 17-21 May 1994. Radiocarbon, Department of Geosciences, University of Arizona, Tucson, pp. 107116.Google Scholar
Villalba, R., Veblen, T.T., 1997. Regional patterns of tree population age structures in northern Patagonia: climatic and disturbance influences. Journal of Ecology 85, 113124.CrossRefGoogle Scholar
Walker, I.R., 2001. Midges: Chironomidae and related Diptera. In Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Changes Using Lakes Sediments Vol. 4. Zoological Indicators. Kluwer Academic, Dordrecht, the Netherlands, pp. 4366.CrossRefGoogle Scholar
Walker, I.R., Wilson, S.E., Smol, J.P., 1995. Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada. Canadian Journal of Fisheries and Aquatic Sciences 52, 950960.CrossRefGoogle Scholar
Whatley, R.C., Cusminsky, G.C., 1999. Lacustrine Ostracoda and late Quaternary palaeoenvironments from the Lake Cari-Laufquen region, Río Negro province, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 151, 229239.CrossRefGoogle Scholar
Whatley, R.C., Cusminsky, G.C., 2000. Quaternary lacustrine ostracoda from northern Patagonia: a review. In Gierlowski-Kordesch, E.H., Kelts, K.R. (Eds.), Lake Basins through Space and Time. American Association of Petroleum Geologists (AAPG) Studies in Geology 46. AAPG, Tulsa, OK, pp. 581590.Google Scholar
Wiederholm, T. (Ed.) 1983. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part I, Larvae. Entomologica Scandinavica Supplement 19. Entomologica Scandinavica, Lund, Sweden.Google Scholar
Williams, J.J., Brooks, S.J., Gosling, W.D., 2012. Response of chironomids to late Pleistocene and Holocene environmental change in the eastern Bolivian Andes. Journal of Paleolimnology 48, 485501.CrossRefGoogle Scholar
Williamson, C.E., Saros, J.E., Vincent, W.F., Smol, J.P., 2009. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography 54, 22732282.CrossRefGoogle Scholar
Wolfram, G., Donabaum, K., Schargerl, M., Kowarc, V.A., 1999. The zoobenthic community of shallow salt pans in Austria – preliminary results on phenology and the impact of salinity on benthic invertebrates. Hydrobiologia 408/409, 193202.CrossRefGoogle Scholar
Zhang, E., Jones, R., Bedford, A., Langdon, P., Tang, H., 2007. A chironomid-based salinity inference model from lakes on the Tibetan Plateau. Journal of Paleolimnology 38, 477491.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 11
Total number of PDF views: 71 *
View data table for this chart

* Views captured on Cambridge Core between 24th March 2017 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Reconstruction of the hydrologic history of a shallow Patagonian steppe lake during the past 700 yr, using chemical, geologic, and biological proxies
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Reconstruction of the hydrologic history of a shallow Patagonian steppe lake during the past 700 yr, using chemical, geologic, and biological proxies
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Reconstruction of the hydrologic history of a shallow Patagonian steppe lake during the past 700 yr, using chemical, geologic, and biological proxies
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *