Skip to main content Accessibility help
Hostname: page-component-684bc48f8b-cvrnb Total loading time: 0.539 Render date: 2021-04-12T17:32:58.059Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Patterns of faunal extinction and paleoclimatic change from mid-Holocene mammoth and polar bear remains, Pribilof Islands, Alaska

Published online by Cambridge University Press:  20 January 2017

Douglas W. Veltre
Department of Anthropology, University of Alaska Anchorage, Alaska 99508, USA
David R. Yesner
Department of Anthropology, University of Alaska Anchorage, Alaska 99508, USA
Kristine J. Crossen
Department of Geological Sciences, University of Alaska Anchorage, Alaska 99508, USA
Russell W. Graham
Earth and Mineral Sciences Museum, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Joan B. Coltrain
Department of Anthropology, University of Utah, Salt Lake City, Utah 84112, USA
E-mail address:


Cave, a lava tube cave on St. Paul Island in the Pribilofs, has recently produced a mid-Holocene vertebrate faunal assemblage including woolly mammoth, polar bear, caribou, and Arctic fox. Several dates on the mammoth remains converge on 5700 14C yr BP. These dates, ~ 2300 yr younger than mammoth dates previously published from the Pribilof Islands, make these the youngest remains of proboscideans, and of non-extinct Quaternary megafauna, recovered from North America. Persistence of mammoths on the Pribilofs is most parsimoniously explained by the isolation of the Pribilofs and the lack of human presence in pre-Russian contact times, but an additional factor may have been the local existence of high-quality forage in the form of grasses enriched by nutrients derived from local Holocene tephras. This interpretation is reinforced by stable carbon and nitrogen isotope values obtained from the mammoth remains. The endpoint of mammoth survival in the Pribilofs is unknown, but maybe coterminous with the arrival of polar bears whose remains in the cave date to the Neoglacial cold period of ~ 4500 to 3500 14C yr BP. The polar bear record corroborates a widespread cooling of the Bering Sea region at that time.

Original Articles
University of Washington

Access options

Get access to the full version of this content by using one of the access options below.


Agenbroad, L.D., (2003). New absolute dates and comparisons for California's Mammuthus exilis... Reumer, J.W.F., de Vos, J., Mol, D. Advances in Mammoth Research Deinsea 9, 116.Google Scholar
Ager, T.A., (1975). Late Quaternary environmental history of the Tanana Valley, Alaska Institute of Polar Studies.. Report 54 Ohio State University, Columbus.Google Scholar
Ambrose, S.H., (1998). Prospects for stable isotopic analysis of later Pleistocene hominid diets in West Asia and Europe.. Akazawa, T., Aoki, K., Bar-Yosef, O. Neanderthals and Humans in Western Asia Plenum Press, New York.277289.Google Scholar
Anderson, A., (1989). Prodigious Birds: Moas and Moa-hunting in Prehistoric New Zealand.. Cambridge University Press, Cambridge.Google Scholar
Barnes, I., Shapiro, B., Lister, A., Kuznetsova, T., Sher, A., Guthrie, D., Thomas, M.G., (2007). Genetic structure and extinction of the woolly mammoth, Mammuthus primigenius.. Current Biology 18, 10721075.CrossRefGoogle Scholar
Bliss, L.C., Richards, J.H., (1982). Present-day Arctic vegetation and ecosystems as a predictive tool for the Arctic-steppe Mammoth Biome.. Hopkins, D.M., Mathews, J.V., Schweger, C.E., Young, S.B. Paleoecology of Beringia Academic Press, New York.241257.CrossRefGoogle Scholar
Bocherens, H., (2003). Isotopic geochemistry and the paleoecology of the Mammoth Steppe fauna.. Reumer, J.W.F., De Vos, J., Mol, D. Advances in Mammoth Research vol. 9, 5776. Denisea.Google Scholar
Churcher, C.S., (1980). Did North American mammoths migrate?. Canadian Journal of Anthropology 1, 103105.Google Scholar
Colinvaux, P.A., (1981). Historical ecology in Beringia: the south Land Bridge coast at St.. Paul Island. Quaternary Research 16, 1836.Google Scholar
Coltrain, J.B., Hayes, M.G., O'Rourke, D.H., (2003). Sealing, whaling, and caribou: the skeletal isotope chemistry of Eastern Arctic foragers.. Journal of Archaeological Science 31, 3957.CrossRefGoogle Scholar
Coltrain, J.B., Harris, J.M., Cerling, T.E., Ehleringer, J.R., Dearing, M., Ward, J., Allen, J., (2004). Trophic level relationships among Rancho La Brea fauna and their implications for the paleoecology of the late Pleistocene based on bone collagen stable carbon and nitrogen isotope chemistry.. Palaeogeography, Palaeoclimatology, Palaeoecology 205, 199219.CrossRefGoogle Scholar
Crockford, S.J., Frederick, S.G., (2007). Sea ice expansion in the Bering Sea during the Neoglacial: evidence from archaeozoology.. The Holocene 17, 699706.CrossRefGoogle Scholar
Crossen, K.J., Graham, R.W., Veltre, D.W., Yesner, D.R., (2003). A Pribilof island cave: late Quaternary mammal bone assemblages from St. Paul Island, Bering Sea, Alaska.. Geological Society of America Abstracts with Programs 35, 424.Google Scholar
Crossen, K.J., Veltre, D.W., Yesner, D.R., Graham, R.W., (2005). 5,700-year-old mammoth remains from the Pribilof Islands, Alaska: last outpost of North American megafauna.. Geological Society of America Abstracts with Programs 37, 463.Google Scholar
Dall, W.H., Harris, G.D., (1892). The neogene of North America.. US Geological Survey Bulletin 84, 1349.Google Scholar
Davis, B.L. (2000). Prehistoric sea mammal hunting in the Eastern Aleutian Islands, Alaska: an archaeofaunal study of subsistence system resilience.. MA Thesis, Department of Anthropology, University of Alaska Fairbanks, .Google Scholar
Dawson, G.M., (1894). Notes on the occurrence of mammoth remains in the Yukon District of Canada and Alaska.. Quarterly Journal of the Geological Society of London 50, 19.CrossRefGoogle Scholar
Dixon, E.J., (1993). Quest for the Origins of the First Americans.. University of New Mexico Press, Albuquerque.Google Scholar
Dumond, D.E., Griffin, D.G., (2002). Measurements of the marine reservoir effect on radiocarbon ages in the eastern Bering Sea.. Arctic 55, 7786.CrossRefGoogle Scholar
Enk, J.M., Yesner, D.R., Crossen, K.J., Veltre, D.W., O'Rourke, D.H., (2008). Phylogeographic analysis of the mid-Holocene mammoth from Cave, St. Paul Island, Alaska.. Submitted to Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Flannery, T.F., (1994). The Future Eaters.. George Braziller, New York.Google Scholar
Fry, B., Sherr, E.B., (1988). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems.. Rundel, P.W., Ehleringer, J.R., Nagy, K.A. Stable Isotopes Ion Ecological Research Springer-Verlag, New York.196229.Google Scholar
Goodman, S.M., Patterson, B.D., (1997). Natural Change and Human Impact in Madagascar.. Smithsonian Institution Press, Washington, D.C.Google Scholar
Graham, R.W., (2001). Late Quaternary biogeography and extinction of proboscideans in North America.. Cavaretta, G., Giola, P., Mussi, M., Palombo, M.R. The World of Elephants (Lat Terra degli Elephanti) Consiglio Nazionale della Richerche, Rome.707709.Google Scholar
Graham, R.W., (2003). Descriptions of the dentitions and stylohyoids of Mammuthus columbi from the Colby site. Appendix 2, Part 2.. Frison, G.C., Todd, L.C. The Colby Mammoth Site University of New Mexico Press, Albuquerque.171190.Google Scholar
Grover, M.A., Tedor, R., (2006). A Mid-Holocene Mammoth Tusk from St. Paul Island. Poster presented at the annual meeting of the Alaska Anthropological Association.. Kodiak, .Google Scholar
Guthrie, R.D., (1968). Paleoecology of the large mammal community in interior Alaska during the late Pleistocene.. American Midland Naturalist 79, 343363.CrossRefGoogle Scholar
Guthrie, R.D., (2004). Radiocarbon evidence of mid-Holocene mammoths stranded on an Alaskan Bering Sea island.. Nature 429, 746749.CrossRefGoogle Scholar
Guthrie, R.D., (2006). New carbon dates link climatic change with human colonization and Pleistocene extinctions.. Nature 44, 207209.CrossRefGoogle Scholar
Haynes, G.W., (1991). Mammoths, Mastodonts, and Elephants: Biology, Behavior, and the Fossil Record.. Cambridge University Press, Cambridge.Google Scholar
Heaton, T.H., Grady, F., (1993). Fossil grizzly bears (Ursus arctos) from Prince of Wales Island, Alaska, offer new insights into animal dispersal, interspecific competition, and age of deglaciation.. Current Research in the Pleistocene 10, 98100.Google Scholar
Heaton, T.H., Talbot, S.L., Shields, G.F., (1996). An Ice Age refugium for large mammals in the Alexander Archipelago, Southeast Alaska.. Quaternary Research 46, 186192.CrossRefGoogle Scholar
Hett, J.M., O'Neill, R.V., (1974). Systems analysis of the Aleut ecosystem.. Arctic Anthropology 11, 3140.Google Scholar
Heusser, C., (1990). Late Quaternary vegetation of the Aleutian Islands, Alaska.. Canadian Journal of Botany 68, 13201326.CrossRefGoogle Scholar
Hoppe, K.A., (2004). Isotopic variability, herd structure, and migration patterns of Late Pleistocene mammoths from multiple death assemblages.. Paleobiology 30, 129145.2.0.CO;2>CrossRefGoogle Scholar
Hoppe, K.A., Koch, P.L., Carlson, R.W., Webb, S.D., (1999). Tracking mammoths and mastodons: reconstruction of migratory behavior using strontium isotope ratios.. Geology 27, 439442.2.3.CO;2>CrossRefGoogle Scholar
Hughen, K.A., (2004). Marine reservoir corrections for CALIB radiocarbon calibration program.. Radiocarbon 46, 10591086.CrossRefGoogle Scholar
Innes, J.B., (2007). Radiocarbon (AMS) dating of the Betula and Alnus pollen rises and Holocene woodland history in the Isle of Man.. SEPG 19, 73.Google Scholar
Innes, J.B., Chiverell, R.C., Blackford, J.J., Davey, P.J., Gonzalez, S., Rutherford, M.M., Tomlinson, P.R., (2004). Earliest Holocene vegetation history and island biogeography of the Isle of Man, British Isles.. Journal of Biogeography 31, 761772.CrossRefGoogle Scholar
Johnson, C.N., (2002). Determinants of loss of mammal species during the Late Quaternary megafaunal extinctions: life history and ecology, but not body size.. Proceedings of the Royal Society of London Series B-Biological Sciences 269, 22212227.CrossRefGoogle Scholar
Koch, P.L., (1991). The isotopic ecology of Pleistocene proboscideans.. Journal of Vertebrate Paleontology 11, 40A.Google Scholar
Krause, J., Dear, P.H., Pollack, J.L., Slatkin, M., Spriggs, H., Barnes, I., Lister, A.M., Ebersberger, I., Pääbo, S., Hofrieter, M., (2006). Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae.. Nature 439, 724727.CrossRefGoogle ScholarPubMed
Kubiak, H., (1982). Morphological characters of the mammoth: an adaptation to the Arctic-steppe environment.. Hopkins, D.M., Mathews, J.V., Schweger, C.E., Young, S.B. Paleoecology of Beringia Academic Press, New York.281289.CrossRefGoogle Scholar
Lister, A.M., (1996). Evolution and taxonomy of Eurasian mammoths.. Shoshani, J., Tassy, P. The Proboscidea: Evolution and Palaecology of Elephants and their Relatives Oxford University Press, Oxford.203213.Google Scholar
Lucas, F.A., (1898). The occurrence of mammoth remains on the Pribilof Islands.. Science 8, 718.Google Scholar
Maddren, A.G., (1905). Smithsonian exploration in Alaska in 1904, in search of mammoth and other fossil remains.. Smithsonian Miscellaneous Collections 49, 1117.Google Scholar
Maglio, V.J., (1973). Origin and evolution of the Elephantidae.. Transactions of the American Philosophical Society 63, 1149. Philadelphia.CrossRefGoogle Scholar
Mann, D.H., Hamilton, T.D., (1995). Late Pleistocene and Holocene paleoenvironments of the North Pacific coast.. Quaternary Science Reviews 14, 449471.CrossRefGoogle Scholar
Mann, D.H., Crowell, A.L., Hamilton, T.D., Finney, B.P., (1999). Holocene geologic and climatic history around the Gulf of Alaska.. Arctic Anthropology 35, 112131.Google Scholar
MacPhee, R.D., Tikhonov, A.N., Mol, D., de Marliave, C., van der Plicht, H., Greenwood, A.D., Flemming, C., Agenbroad, L., (2002). Radiocarbon chronologies and extinction dynamics of the late Quaternary mammalian megafauna of the Taimyr Peninsula, Russian Federation.. Journal of Archaeological Sciences 29, 10171042.CrossRefGoogle Scholar
Martin, P.S., Stuart, A.J., (1995). Mammoth extinction: two continents and Wrangel Island.. Radiocarbon 37, 710.CrossRefGoogle Scholar
Miller, G.H., (1999). Pleistocene extinction of Genyornis newtoni: human impact on Australian megafauna.. Science 283, 205208.CrossRefGoogle ScholarPubMed
Olivier, R.C.D., (1982). Ecology and behavior of living elephants: bases for assumptions concerning the extinct woolly mammoths.. Hopkins, D.M., Mathews, J.V., Schweger, C.E., Young, S.B. Paleoecology of Beringia Academic Press, New York.291306.CrossRefGoogle Scholar
Noro, M., Masuda, R., Dubrovo, I.A., Yoshida, M.C., Kato, M., (1998). Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes.. Journal of Molecular Evolution, 46, 314326.CrossRefGoogle ScholarPubMed
Pean, S., Patou-Mathis, M., (2003). Taphonomy of mammoth sites.. Reumer, J., devos, J., Mol, D. Advances in Mammoth Research vol. 9, 331345. Denisea.Google Scholar
Perry, R., (1966). The World of the Polar Bear.. Cassell, London.Google Scholar
Preble, E.A., Preble, E.A., and McAtee, W.L. (1923). Mammals of the Pribilof Islands in A Biological Survey of the Pribilof Islands, Alaska, Part I: Birds and Mammals.. vol. 46, North American Fauna, 102120.Google Scholar
Ray, C.E., (1971). Polar bear and mammoth on the Pribilof Islands.. Arctic 24, 918.CrossRefGoogle Scholar
Reimer, P.J., (2004). IntCal04 terrestrial radiocarbon age calibration, 0–26 Cal Kyr BP.. Radiocarbon 46, 10291058.CrossRefGoogle Scholar
Robinson, S.W., Thompson, G., (1981). Radiocarbon corrections for marine shell dates with application to southern Pacific Northwest Coast prehistory.. Syesis 14, 4557.Google Scholar
Rogaev, E.I., Moliaka, Y.K., Malyarchuk, B.A., Kondrashov, F.A., Derenko, M.V., Chumakov, I., Grigorenko, A.P., (2006). Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.. PLoS Biology 5, 403410.Google Scholar
Simmons, A.H., (1999). Faunal Extinction in an Island Society.. Kluwer Academic/ Plenum, New York.Google Scholar
Stanley-Brown, J., (1892). Geology of the Pribilof Islands.. Geological Society of America Bulletin 3, 496500.Google Scholar
Stein, F.W., (1830). Were the Aleutian Islands a product of fire or ice?. Vsesoiuznoe Mineralogicheskoe Obshchestvo 2, 347389. [in Russian].Google Scholar
Stuart, A.J., Sulerzhitsky, L.D., Orlova, L.A., Kuzmin, Y.V., Lister, A.M., (2002). The latest woolly mammoths (Mammuthus primigenius Blumenbach) in Europe and Asia: a review of the current evidence.. Quaternary Science Reviews 21, 15591569.CrossRefGoogle Scholar
Stuart, A.J., Kosintsev, P.A., Higham, T.F.G., Lister, A.M., (2004). Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth.. Nature 431, 684689.CrossRefGoogle ScholarPubMed
Stuiver, M., (1998). INTCAL98 radiocarbon age calibration.. Radiocarbon 40, 215230.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T.F., (1993). Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC.. Radiocarbon 35, 137189.CrossRefGoogle Scholar
Talbot, S.L., Shields, G.F., (1996). Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae.. Molecular Phylogenetics and Evolution 5, 477494.CrossRefGoogle ScholarPubMed
Tauber, H., (1979). 14C activity of Arctic marine mammals.. Berger, R., Suess, H.E. Radiocarbon Dating University of California Press, Berkeley.446452.Google Scholar
Tikhonov, A., Agenbroad, L., Vartanyan, S., (2003). Comparative analysis of the mammoth populations on Wrangel Island and the Channel Islands.. Reumer, J.W.F., De Vos, J., Mol, D. Advances in Mammoth Research vol. 9, 415420. Denisea.Google Scholar
Vartanyan, S.L., Garutt, V.E., Sher, A.V., (1993). Holocene dwarf mammoths from Wrangel Island in the Siberian Arctic.. Nature 362, 337339.CrossRefGoogle ScholarPubMed
Vartanyan, S.L., Arslanov, K.A., Tertychnaya, T.V., Chernov, S.B., (1995). Radiocarbon dating evidence for mammoths on Wrangel Island, Arctic Ocean, until 2000 BC.. Radiocarbon 37, 16.CrossRefGoogle Scholar
Veltre, D.W., Veltre, M.J., (1988). The Northern fur seal: a subsistence and commercial resource for Aleuts of the Aleutian and Pribilof Islands, Alaska.. Etudes/Inuit/Studies 11, 5172.Google Scholar
Veltre, D.W., McCartney, A.P., (2002). Russian exploitation of Aleuts and fur seals: the archaeology of Eighteenth and early Nineteenth-century settlements in the Pribilof Islands, Alaska.. Historical Archaeology 36, 817.CrossRefGoogle Scholar
Veltre, D.W., Yesner, D.R., Crossen, K.J., Graham, R.W., (2004). Late Pleistocene/Holocene mammal bone assemblages from a cave on St. Paul Island: implications for paleoclimatic change and human occupation of the Bering Sea region.. Alaska Anthropological Association Program and Abstracts vol. 27, 13.Google Scholar
Veniaminov, I., (1984). Notes on the Islands of the Unalashka District.. (Black, L.T., Geoghegan, R.H., Trans.) Limestone Press, Kingston, Ontario. [orig. Russian-American Co., St. Petersburg, 1840].Google Scholar
Vereschagin, N.K., Baryshnikov, G.F., (1982). Paleoecology of the mammoth fauna in the Eurasian Arctic.. Hopkins, D.M., Matthews, J.V., Schweger, C.E., Young, S.B. Paleoecology of Beringia Academic Press, New York.267279.CrossRefGoogle Scholar
Vinson, D.W., (1988). Preliminary report on faunal identifications from Trail Creek Caves.. Schaaf, J. The Bering Land Bridge National Preserve: An Archaeological Survey 410438. U.S. National Park Service, Anchorage.Google Scholar
Winer, G.S., Feeley, T.C., Cosca, M.A., (2003). Evolution and geochronology of the youngest eruptive center in the Bering Sea: St. Paul Island, Pribilof Islands, Alaska.. Geological Society of America Abstracts with Programs 35, 424.Google Scholar
Winer, G.S., Feeley, T.C., Cosca, M.A., (2004). Basaltic volcanism in the Bering Sea: geochronology and volcanic evolution of St. Paul Island, Pribilof Islands, Alaska.. Journal of Volcanology and Geothermal Research 134, 277301.CrossRefGoogle Scholar
Wolverton, S., (2001). Caves, ursids, and artifacts: a natural-trap hypothesis.. Journal of Ethnobiology 21, 572.Google Scholar
Worthy, T.H., Holdaway, R.N., (2002). The Lost World of the Moa.. Indiana University Press, Bloomington.Google Scholar
Yesner, D.R., (1995). Human adaptation at the Pleistocene/Holocene boundary in Eastern Beringia.. Straus, L.G., Eriksen, B.V., Erlandson, J.M., Yesner, D.R. Humans at the End of the Ice Age: Archaeology of the Pleistocene/Holocene Transition Plenum Press, New York.255276.Google Scholar
Yesner, D.R., (2000). Human colonization of Eastern Beringia and the question of mammoth hunting.. West, D.L. Mammoth Site Studies University of Kansas Publications in Anthropology, 6984. No. 22, Lawrence.Google Scholar
Yesner, D.R., (2001). Human dispersal into interior Alaska: antecedent conditions, mode of colonization, and adaptations.. Quaternary Science Reviews 20, 315327.CrossRefGoogle Scholar
Yesner, D.R., (2007). Faunal extinction, hunter-gatherer foraging strategies, and subsistence diversity among Eastern Beringian Paleoindians.. Walker, R.B., Driskell, B.N. Foragers of the Terminal Pleistocene in North America University of Nebraska Press, Lincoln.1531.CrossRefGoogle Scholar
Yesner, D.R., Holmes, C.E., Crossen, K.J., (1993). Archaeology and paleoecology of the Broken Mammoth Site, Central Tanana Valley, interior Alaska, USA.. Current Research in the Pleistocene 9, 5357.Google Scholar
Yesner, D.R., Crossen, K.J., (1994). Prehistoric people of Alaska's Interior in Prehistoric Alaska.. Rennick, P. Alaska Geographic vol. 21, 9093.Google Scholar
Yesner, D.R., Veltre, D.W., Crossen, K.J., Graham, R.W., (2005a). Mid-Holocene mammoth remains from Cave, Pribilof Islands, Alaska: implications for megafaunal extinction and peopling of the Americas.. Society for American Archaeology Abstracts 70, 317318.Google Scholar
Yesner, D.R., Veltre, D.W., Crossen, K.J., Graham, R.W., (2005b). 5,700-year-old mammoth remains from Cave, Pribilof Islands, Alaska: North America's last outpost of Pleistocene megafauna.. In: Agenbroad, L.R., Symington, S. The World of Elephants: Short Papers and Abstracts of the 2nd International Congress vol. 4, Mammoth Site Scientific Papers, 200204.Google Scholar
Yesner, D.R., Crossen, K.J., Veltre, D.W., (2008). Island biogeography and megafaunal extinction: a model from the Pribilof Islands, Bering Sea, Alaska.. Submitted to Polar Geography..Google Scholar
Zhang, Y.P., Ryder, O.A., (1994). Phylogenetic relationships of bears (the Ursidae) inferred from mitochondrial DNA sequences.. Molecular Phylogenetics and Evolution 3, 351359.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 54 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 12th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Patterns of faunal extinction and paleoclimatic change from mid-Holocene mammoth and polar bear remains, Pribilof Islands, Alaska
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Patterns of faunal extinction and paleoclimatic change from mid-Holocene mammoth and polar bear remains, Pribilof Islands, Alaska
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Patterns of faunal extinction and paleoclimatic change from mid-Holocene mammoth and polar bear remains, Pribilof Islands, Alaska
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *