Skip to main content Accessibility help
Hostname: page-component-59b7f5684b-z9m8x Total loading time: 1.855 Render date: 2022-09-29T09:43:44.692Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

One thousand seven hundred years of interaction between glacial activity and flood frequency in proglacial Lake Muzelle (western French Alps)

Published online by Cambridge University Press:  25 May 2017

Laurent Fouinat*
EDYTEM, Université Savoie Mont Blanc–CNRS, 73376 Le Bourget-du-Lac Cedex, France
Pierre Sabatier
EDYTEM, Université Savoie Mont Blanc–CNRS, 73376 Le Bourget-du-Lac Cedex, France
Jérôme Poulenard
EDYTEM, Université Savoie Mont Blanc–CNRS, 73376 Le Bourget-du-Lac Cedex, France
David Etienne
CARRTEL, Université Savoie Mont Blanc, 73376 Le Bourget-du-Lac, France
Christian Crouzet
ISTERRE, Université Savoie Mont Blanc–CNRS, 73376 Le Bourget-du-Lac, France
Anne-Lise Develle
EDYTEM, Université Savoie Mont Blanc–CNRS, 73376 Le Bourget-du-Lac Cedex, France
Elise Doyen
INRAP, 51520 Saint-Martin sur-le-Pré, France
Emmanuel Malet
EDYTEM, Université Savoie Mont Blanc–CNRS, 73376 Le Bourget-du-Lac Cedex, France
Jean-Louis Reyss
LSCE, Université de Versailles Saint-Quentin CEA-CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
Clotilde Sagot
Parc National des Ecrins, Domaine de Charance, 05000 Gap, France
Richard Bonet
Parc National des Ecrins, Domaine de Charance, 05000 Gap, France
Fabien Arnaud
EDYTEM, Université Savoie Mont Blanc–CNRS, 73376 Le Bourget-du-Lac Cedex, France
*Corresponding author at: EDYTEM, Université Savoie Mont Blanc–CNRS, 73376 Le Bourget-du-Lac Cedex, France. E-mail: (L. Fouinat).


Local glacial fluctuations and flood occurrences were investigated in the sediment sequence of proglacial Lake Muzelle. Based on geochemical analysis and organic matter content established using loss on ignition and reflectance spectroscopy, we identified six periods of increased glacial activity over the last 1700 yr. Each is in accordance with records from reference glaciers in the Alps. A total of 255 graded layers were identified and interpreted as flood deposits. Most of these occurred during glacial advances such as the Little Ice Age period and exhibit thicker deposits characterized by an increase in the fine grain-size fraction. Fine sediment produced by glacial activity is transported to the proglacial lake during heavy rainfall events. The excess of glacial flour during these periods seems to increase the watershed’s tendency to produce flood deposits in the lake sediment, suggesting a strong influence of the glacier on flood reconstruction records. Thus, both flood frequency and intensity, which is estimated based on layer thickness as a proxy, cannot be used in reconstruction of past extreme events because of their variability. There is a need to take into account changes in sediment supply in proglacial areas that could preclude satisfactory interpretation of floods in terms of past climate variability.

Research Article
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Alexandrescu, M., Courtillot, V., Le Mouël, J., 1997. High‐resolution secular variation of the geomagnetic field in western Europe over the last 4 centuries: comparison and integration of historical data from Paris and London. Journal of Geophysical Research: Solid Earth 102, 2024520258.CrossRefGoogle Scholar
Alley, R.B., Lawson, D.E., Larson, G.J., Evenson, E.B., Baker, G.S., 2003. Stabilizing feedbacks in glacier-bed erosion. Nature 424, 758760.CrossRefGoogle ScholarPubMed
Amann, B., Szidat, S., Grosjean, M., 2015. A millennial-long record of warm season precipitation and flood frequency for the north-western Alps inferred from varved lake sediments: implications for the future. Quaternary Science Reviews 115, 89100.CrossRefGoogle Scholar
Appleby, P.G., Richardson, N., Nolan, P.J., 1991. 241Am dating of lake sediments. In: Smith, J.P., Appleby, P.G., Battarbee, R.W., Dearing, J.A., Flower, R., Haworth, E.Y., Oldfield, F., O’Sullivan, P.E. (Eds.), Environmental History and Palaeolimnology. Developments in Hydrobiology Vol. 67. Springer, Dordrecht, the Netherlands, pp. 3542.CrossRefGoogle Scholar
Arnaud, F., Lignier, V., Revel, M., Desmet, M., Beck, C., Pourchet, M., Charlet, F., Trentesaux, A., Tribovillard, N., 2002. Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NW Alps). Terra Nova 14, 225232.CrossRefGoogle Scholar
Bajard, M., Sabatier, P., David, F., Develle, A.-L., Reyss, J.-L., Fanget, B., Malet, E., et al., 2016. Erosion record in Lake La Thuile sediments (Prealps, France): evidence of montane landscape dynamics throughout the Holocene. Holocene 26, 350364.CrossRefGoogle Scholar
Bakke, J., Dahl, S.O., Paasche, Ø., Riis Simonsen, J., Kvisvik, B., Bakke, K., Nesje, A., 2010. A complete record of Holocene glacier variability at Austre Okstindbreen, northern Norway: an integrated approach. Quaternary Science Reviews 29, 12461262.CrossRefGoogle Scholar
Balsam, W.L., Deaton, B.C., Damuth, J.E., 1998. The effects of water content on diffuse reflectance spectrophotometry studies of deep-sea sediment cores. Marine Geology 149, 177189.CrossRefGoogle Scholar
Beniston, M., 2007. Linking extreme climate events and economic impacts: examples from the Swiss Alps. Energy Policy 35, 53845392.CrossRefGoogle Scholar
Blaauw, M., 2010. Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.CrossRefGoogle Scholar
Bøe, A.-G., Dahl, S.O., Lie, Ø., Nesje, A., 2006. Holocene river floods in the upper Glomma catchment, southern Norway: a high-resolution multiproxy record from lacustrine sediments. Holocene 16, 445455.CrossRefGoogle Scholar
Bogen, J., 1996. Erosion rates and sediment yields of glaciers. Annals of Glaciology 22, 4852.CrossRefGoogle Scholar
Boldt, B.R., Kaufman, D.S., McKay, N.P., Briner, J.P., 2015. Holocene summer temperature reconstruction from sedimentary chlorophyll content, with treatment of age uncertainties, Kurupa Lake, Arctic Alaska. Holocene 25, 641650.CrossRefGoogle Scholar
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J.O., et al., 2011. 2500 Years of European climate variability and human susceptibility. Science 331, 578582.CrossRefGoogle ScholarPubMed
Bussmann, F., Anselmetti, F.S., 2010. Rossberg landslide history and flood chronology as recorded in Lake Lauerz sediments (Central Switzerland). Swiss Journal of Geosciences 103, 4359.CrossRefGoogle Scholar
Casty, C., Wanner, H., Luterbacher, J., Esper, J., Böhm, R., 2005. Temperature and precipitation variability in the European Alps since 1500. International Journal of Climatology 25, 18551880.CrossRefGoogle Scholar
Dahl, S.O., Bakke, J., Lie, Ø., Nesje, A., 2003. Reconstruction of former glacier equilibrium-line altitudes based on proglacial sites: an evaluation of approaches and selection of sites. Quaternary Science Reviews 22, 275287.CrossRefGoogle Scholar
Dahl, S.O., Nesje, A., 1994. Holocene glacier fluctuations at Hardangerjøkulen, central-southern Norway: a high-resolution composite chronology from lacustrine and terrestrial deposits. Holocene 4, 269277.CrossRefGoogle Scholar
Dahlke, H.E., Lyon, S.W., Stedinger, J.R., Rosqvist, G., Jansson, P., 2012. Contrasting trends in floods for two sub-arctic catchments in northern Sweden – does glacier presence matter? Hydrology and Earth System Sciences 16, 21232141.CrossRefGoogle Scholar
Debret, M., Desmet, M., Balsam, W., Copard, Y., Francus, P., Laj, C., 2006. Spectrophotometer analysis of Holocene sediments from an anoxic fjord: Saanich Inlet, British Columbia, Canada. Marine Geology 229, 1528.CrossRefGoogle Scholar
Debret, M., Sebag, D., Desmet, M., Balsam, W., Copard, Y., Mourier, B., Susperrigui, A.-S., et al., 2011. Spectrocolorimetric interpretation of sedimentary dynamics: the new “Q7/4 diagram. Earth-Science Reviews 109, 119.CrossRefGoogle Scholar
Desloges, J.R., 1994. Varve deposition and the sediment yield record at three small lakes of the southern Canadian Cordillera. Arctic and Alpine Research 26, 130140.CrossRefGoogle Scholar
Diolaiuti, G.A., Maragno, D., D’Agata, C., Smiraglia, C., Bocchiola, D., 2011. Glacier retreat and climate change: documenting the last 50 years of Alpine glacier history from area and geometry changes of Dosde Piazzi glaciers (Lombardy Alps, Italy). Progress in Physical Geography 35, 161182.CrossRefGoogle Scholar
Dyurgerov, M.B., Meier, M.F., 2000. Twentieth century climate change: evidence from small glaciers. Proceedings of the National Academy of Sciences of the United States of America 97, 14061411.CrossRefGoogle ScholarPubMed
Etienne, D., Jouffroy-Bapicot, I., 2014. Optimal counting limit for fungal spore abundance estimation using Sporormiella as a case study. Vegetation History and Archaeobotany 23, 743749.CrossRefGoogle Scholar
Etienne, D., Wilhelm, B., Sabatier, P., Reyss, J.-L., Arnaud, F., 2013. Influence of sample location and livestock numbers on Sporormiella concentrations and accumulation rates in surface sediments of Lake Allos, French Alps. Journal of Paleolimnology 49, 117127.CrossRefGoogle Scholar
Faegri, K., Kaland, P.E., Krzywinski, K., 1989. Textbook of Pollen Analysis. John Wiley and Sons, New York.Google Scholar
Gardent, M., 2014. Inventaire et retrait des glaciers dans les alpes françaises depuis la fin du Petit Age Glaciaire. PhD dissertation, Université de Grenoble, Grenoble, France.Google Scholar
Gardent, M., Rabatel, A., Dedieu, J.-P., Deline, P., 2014. Multitemporal glacier inventory of the French Alps from the late 1960s to the late 2000s. Global and Planetary Change 120, 2437.CrossRefGoogle Scholar
Giguet-Covex, C., Arnaud, F., Enters, D., Poulenard, J., Millet, L., Francus, P., David, F., Rey, P.-J., Wilhelm, B., Delannoy, J.-J., 2012. Frequency and intensity of high-altitude floods over the last 3.5ka in northwestern French Alps (Lake Anterne). Quaternary Research 77, 1222.CrossRefGoogle Scholar
Gilbert, R., Shaw, J., 1981. Sedimentation in proglacial Sunwapta Lake, Alberta. Canadian Journal of Earth Sciences 18, 8193.CrossRefGoogle Scholar
Gilli, A., Anselmetti, F.S., Glur, L., Wirth, S.B., 2013. Lake sediments as archives of recurrence rates and intensities of past flood events. In: Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (Eds.), Dating Torrential Processes on Fans and Cones. Springer, Dordrecht, the Netherlands, pp. 225242.CrossRefGoogle Scholar
Glur, L., Stalder, N.F., Wirth, S.B., Gilli, A., Anselmetti, F.S., 2014. Alpine lacustrine varved record reveals summer temperature as main control of glacier fluctuations over the past 2250 years. Holocene 25, 280287.CrossRefGoogle Scholar
Glur, L., Wirth, S.B., Büntgen, U., Gilli, A., Haug, G.H., Schär, C., Beer, J., Anselmetti, F.S., 2013. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years. Scientific Reports 3, 2770. ScholarPubMed
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., Stoffel, M., 2014. 21st century climate change in the European Alps—a review. Science of the Total Environment 493, 11381151.CrossRefGoogle ScholarPubMed
Goldberg, E.D., 1963. Geochronology with 210Pb. Radioactive dating 121.Google Scholar
Hallet, B., Hunter, L., Bogen, J., 1996. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Global and Planetary Change 12, 213235.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.CrossRefGoogle Scholar
Hicks, D.M., McSaveney, M.J., Chinn, T.J.H., 1990. Sedimentation in proglacial Ivory Lake, Southern Alps, New Zealand. Arctic and Alpine Research 22, 2642.CrossRefGoogle Scholar
Hodder, K.R., Gilbert, R., Desloges, J.R., 2007. Glaciolacustrine varved sediment as an alpine hydroclimatic proxy. Journal of Paleolimnology 38, 365394.CrossRefGoogle Scholar
Holzhauser, H., Magny, M.J., Zumbühl, H.J., 2005. Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 15, 789801.CrossRefGoogle Scholar
Jenny, J.-P., Wilhelm, B., Arnaud, F., Sabatier, P., Giguet Covex, C., Mélo, A., Fanget, B., Malet, E., Ployon, E., Perga, M.E., 2014. A 4D sedimentological approach to reconstructing the flood frequency and intensity of the Rhône River (Lake Bourget, NW European Alps). Journal of Paleolimnology 51, 469483.CrossRefGoogle Scholar
Karlén, W., 1976. Lacustrine sediments and tree-limit variations as indicators of Holocene climatic fluctuations in Lappland, northern Sweden. Geografiska Annaler: Series A, Physical Geography 58, 134.CrossRefGoogle Scholar
Koppes, M.N., Hallet, B., 2002. Influence of rapid glacial retreat on the rate of erosion by tidewater glaciers. Geology 30, 4750.2.0.CO;2>CrossRefGoogle Scholar
Lanza, R., Meloni, A., Tema, E., 2005. Historical measurements of the Earth’s magnetic field compared with remanence directions from lava flows in Italy over the last four centuries. Physics of the Earth and Planetary Interiors 148, 97107.CrossRefGoogle Scholar
Leemann, A., Niessen, F., 1994. Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments. Holocene 4, 259268.CrossRefGoogle Scholar
Leonard, E.M., 1997. The relationship between glacial activity and sediment production: evidence from a 4450-year varve record of neoglacial sedimentation in Hector Lake, Alberta, Canada. Journal of Paleolimnology 17, 319330.CrossRefGoogle Scholar
Le Roy, M., Nicolussi, K., Deline, P., Astrade, L., Edouard, J.-L., Miramont, C., Arnaud, F., 2015. Calendar-dated glacier variations in the western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quaternary Science Reviews 108, 122.CrossRefGoogle Scholar
Lurcock, P.C., Wilson, G.S., 2012. PuffinPlot: a versatile, user-friendly program for paleomagnetic analysis. Geochemistry, Geophysics, Geosystems 13, Q06Z45. Scholar
Menounos, B., Clague, J.J., 2008. Reconstructing hydro-climatic events and glacier fluctuations over the past millennium from annually laminated sediments of Cheakamus Lake, southern Coast Mountains, British Columbia, Canada. Quaternary Science Reviews 27, 701713.CrossRefGoogle Scholar
Micheletti, N., Lane, S.N., 2016. Water yield and sediment export in small, partially glaciated Alpine watersheds in a warming climate. Water Resources Research 52, 49244943.CrossRefGoogle Scholar
Navratil, O., Evrard, O., Esteves, M., Legout, C., Ayrault, S., Némery, J., Mate-Marin, A., et al., 2012. Temporal variability of suspended sediment sources in an alpine catchment combining river/rainfall monitoring and sediment fingerprinting. Earth Surface Processes and Landforms 37, 828846.CrossRefGoogle Scholar
Nesje, A., Kvamme, M., Rye, N., Løvlie, R., 1991. Holocene glacial and climate history of the Jostedalsbreen region, western Norway; evidence from lake sediments and terrestrial deposits. Quaternary Science Reviews 10, 87114.CrossRefGoogle Scholar
Nesje, A., Matthews, J.A., Dahl, O., Berrisford, M.S., Andersson, C., 2001. Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. Holocene 11, 267280.CrossRefGoogle Scholar
Nussbaumer, S.U., Steinhilber, F., Trachsel, M., Breitenmoser, P., Beer, J., Blass, A., Grosjean, M., et al., 2011. Alpine climate during the Holocene: a comparison between records of glaciers, lake sediments and solar activity. Journal of Quaternary Science 26, 703713.CrossRefGoogle Scholar
Oerlemans, J., 2005. Extracting a climate signal from 169 glacier records. Science 308, 675677.CrossRefGoogle ScholarPubMed
Oerlemans, J., Reichert, B., 2000. Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. Journal of Glaciology 46, 16.CrossRefGoogle Scholar
Ohlendorf, C., Niessen, F., Weissert, H., 1997. Glacial varve thickness and 127 years of instrumental climate data: a comparison. Climatic Change 36, 391411.CrossRefGoogle Scholar
Owen, L.A., Derbyshire, E., Scott, C.H., 2003. Contemporary sediment production and transfer in high-altitude glaciers. Sedimentary Geology 155, 1336.CrossRefGoogle Scholar
Passega, R., 1964. Grain size representation by CM patterns as a geological tool. Journal of Sedimentary Research 34, 830847.CrossRefGoogle Scholar
R Development Core Team. 2011. The R Reference Manual. Network Theory, Bristol, UK.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., Dullo, W.-C., 2005. El Niño variability off Peru during the last 20,000 years. Paleoceanography 20, PA4003. Scholar
Rein, B., Sirocko, F., 2002. In-situ reflectance spectroscopy – analysing techniques for high-resolution pigment logging in sediment cores. International Journal of Earth Sciences 91, 950954.CrossRefGoogle Scholar
Reyss, J.-L., Schmidt, S., Legeleux, F., Bonté, P., 1995. Large, low background well-type detectors for measurements of environmental radioactivity. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 357, 391397.CrossRefGoogle Scholar
Rickenmann, D., D’Agostino, V., Fontana, G.D., Lenzi, M., Marchi, L., 1998. New results from sediment transport measurements in two Alpine torrents. In: Kovar, K., Tappeiner, U., Peters, N.E., Craig, R.G. (Eds.), Hydrology, Water Resources and Ecology in Headwaters (Proceedings of the HeadWater ’98 Conference held at Meran/Merano, Italy, from 20 to 23 April 1998). IAHS Publication No. 248. International Association of Hydrological Sciences, Wallingford, Oxfordshire, UK, pp. 283–290.Google Scholar
Riihimaki, C.A., MacGregor, K.R., Anderson, R.S., Anderson, S.P., Loso, M.G., 2005. Sediment evacuation and glacial erosion rates at a small alpine glacier. Journal of Geophysical Research: Earth Surface 110, F03003. Scholar
Sabatier, P., Dezileau, L., Briqueu, L., Colin, C., Siani, G., 2010. Clay minerals and geochemistry record from northwest Mediterranean coastal lagoon sequence: implications for paleostorm reconstruction. Sedimentary Geology 228, 205217.CrossRefGoogle Scholar
Schiefer, E., Gilbert, R., Hassan, M.A., 2011. A lake sediment-based proxy of floods in the Rocky Mountain Front Ranges, Canada. Journal of Paleolimnology 45, 137149.CrossRefGoogle Scholar
Simonneau, A., Chapron, E., Garçon, M., Winiarski, T., Graz, Y., Chauvel, C., Debret, M., Motelica-Heino, M., Desmet, M., Di Giovanni, C., 2014. Tracking Holocene glacial and high-altitude alpine environments fluctuations from minerogenic and organic markers in proglacial lake sediments (Lake Blanc Huez, Western French Alps). Quaternary Science Reviews 89, 2743.CrossRefGoogle Scholar
Steiner, D., Pauling, A., Nussbaumer, S.U., Nesje, A., Luterbacher, J., Wanner, H., Zumbühl, H.J., 2008. Sensitivity of European glaciers to precipitation and temperature – two case studies. Climatic Change 90, 413441.CrossRefGoogle Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et spores 13, 615621.Google Scholar
Støren, E.N., Paasche, Ø., 2014. Scandinavian floods: from past observations to future trends. Global and Planetary Change 113, 3443.CrossRefGoogle Scholar
Swierczynski, T., Lauterbach, S., Dulski, P., Delgado, J., Merz, B., Brauer, A., 2013. Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quaternary Science Reviews 80, 7890.CrossRefGoogle Scholar
Trachsel, M., Kvisvik, B.C., Nielsen, P.R., Bakke, J., Nesje, A., 2013. Inferring organic content of sediments by scanning reflectance spectroscopy (380–730nm): applying a novel methodology in a case study from proglacial lakes in Norway. Journal of Paleolimnology 50, 583592.CrossRefGoogle Scholar
van der Bilt, W.G.M., Bakke, J., Vasskog, K., D’Andrea, W.J., Bradley, R.S., Ólafsdóttir, S., 2015. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quaternary Science Reviews 126, 201218.CrossRefGoogle Scholar
van Geel, B., Aptroot, A., 2006. Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82, 313329.CrossRefGoogle Scholar
van Geel, B., Buurman, J., Brinkkemper, O., Schelvis, J., Aptroot, A., van Reenen, G., Hakbijl, T., 2003. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30, 873883.CrossRefGoogle Scholar
Vincent, C., 2002. Influence of climate change over the 20th century on four French glacier mass balances. Journal of Geophysical Research: Atmospheres 107, 4375. Scholar
Vincent, C., Le Meur, E., Six, D., Funk, M., 2005. Solving the paradox of the end of the Little Ice Age in the Alps. Geophysical Research Letters 32, L09706. Scholar
Weirich, F.H., 1985. Sediment budget for a high energy glacial lake. Geografiska Annaler: Series A, Physical Geography 67, 8399.CrossRefGoogle Scholar
Wilhelm, B., Arnaud, F., Sabatier, P., Crouzet, C., Brisset, E., Chaumillon, E., Disnar, J.-R., et al., 2012. 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms. Quaternary Research 78, 112.CrossRefGoogle Scholar
Wilhelm, B., Arnaud, F., Sabatier, P., Magand, O., Chapron, E., Courp, T., Tachikawa, K., et al., 2013. Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the north-west European Alps. Journal of Quaternary Science 28, 189199.CrossRefGoogle Scholar
Wilhelm, B., Nomade, J., Crouzet, C., Litty, C., Sabatier, P., Belle, S., Rolland, Y., Revel, M., Courboulex, F., Arnaud, F., 2016. Quantified sensitivity of small lake sediments to record historic earthquakes: implications for paleoseismology. Journal of Geophysical Research: Earth Surface 121, 216.Google Scholar
Wilhelm, B., Sabatier, P., Arnaud, F., 2015. Is a regional flood signal reproducible from lake sediments? Sedimentology 62, 11031117.CrossRefGoogle Scholar
Wirth, S.B., Glur, L., Gilli, A., Anselmetti, F.S., 2013. Holocene flood frequency across the Central Alps – solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quaternary Science Reviews 80, 112128.CrossRefGoogle Scholar
Wolfe, A.P., Vinebrooke, R.D., Michelutti, N., Rivard, B., Das, B., 2006. Experimental calibration of lake-sediment spectral reflectance to chlorophyll a concentrations: methodology and paleolimnological validation. Journal of Paleolimnology 36, 91100.CrossRefGoogle Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

One thousand seven hundred years of interaction between glacial activity and flood frequency in proglacial Lake Muzelle (western French Alps)
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

One thousand seven hundred years of interaction between glacial activity and flood frequency in proglacial Lake Muzelle (western French Alps)
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

One thousand seven hundred years of interaction between glacial activity and flood frequency in proglacial Lake Muzelle (western French Alps)
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *