Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-28jzs Total loading time: 0.355 Render date: 2021-03-06T12:10:18.548Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Late Quaternary Vegetation and Climatic History of the Long Valley Area, West-Central Idaho, U.S.A.

Published online by Cambridge University Press:  20 January 2017

James P. Doerner
Affiliation:
Department of Geography, University of Northern Colorado, Greeley, Colorado, 80639
Paul E. Carrara
Affiliation:
U.S. Geological Survey, Mail Stop 913, Denver Federal Center, Denver, Colorado, 80225

Abstract

Paleoenvironmental data, including pollen and sediment analyses, radiocarbon ages, and tephra identifications of a core recovered from a fen, provide a ca. 16,500 14C yr B.P. record of late Quaternary vegetation and climate change in the Long Valley area of west-central Idaho. The fen was deglaciated prior to ca. 16,500 14C yr B.P., after which the pollen rain was dominated by Artemisia, suggesting that a cold, dry climate prevailed until ca. 12,200 14C yr B.P. From ca. 12,200 to 9750 14C yr B.P. temperatures gradually increased and a cool, moist climate similar to the present prevailed. During this period a closed spruce–pine forest surrounded the fen. This cool, moist climate was briefly interrupted by a dry and/or cold interval between ca. 10,800 and 10,400 14C yr B.P. that may be related to the Younger Dryas climatic oscillation. From ca. 9750 to 3200 14C yr B.P. the regional climate was significantly warmer and drier than at present and an open pine forest dominated the area around the fen. Maximum aridity occurred after the deposition of the Mazama tephra (ca. 6730 14C yr B.P.). After 3200 14C yr B.P. regional cooling brought cool, moist conditions to the area; the establishment of the modern montane forest around the fen and present-day cool and moist climate began at ca. 2000 14C yr B.P.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below.

References

Baker, R.G. Holocene vegetational history of the Western United States. Wright, H.E. Jr. (1983). Late-Quaternary Environments of the United States. Vol. 2, The Holocene. Univ. of Minnesota Press, Minneapolis. 109127.Google Scholar
Barry, R.G., and Chorley, R.J. (1976). Atmosphere, weather, and climate. Methuen, London.Google ScholarPubMed
Beiswenger, J.M. (1991). Late Quaternary vegetational history of Grays Lake, Idaho. Ecological Monographs 61, 165182.CrossRefGoogle Scholar
Benson, J.B., Lund, S., Kashgarian, M., and Mensing, S. (1997). Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination. Nature 388, 263265.CrossRefGoogle Scholar
Bright, R.C. (1966). Pollen and seed stratigraphy of Swan Lake, southeastern Idaho: Its relation to regional vegetational history and to Lake Bonneville history. Tebiwa 9, 147.Google Scholar
Bright, R.C., and Davis, O.K. (1982). Quaternary paleoecology of the Idaho national engineering laboratory, Snake River Plain, Idaho. American Midland Naturalist 108, 2133.CrossRefGoogle Scholar
Busacca, A.J., and McDonald, E.V. (1994). Regional sedimentation of late Quaternary loess on the Columbia Plateau: Sediment source areas and loess distribution patterns. Washington Division of Geology and Earth Resources Bulletin 80, 181190.Google Scholar
Colman, S.M., and Pierce, K.L. (1986). Glacial sequence near McCall, Idaho: Weathering rinds, soil development, morphology, and other relative-age criteria. Quaternary Research 25, 2542.CrossRefGoogle Scholar
Cooper, D.J. (1986). Community structure and classification of Rocky Mountain wetland ecosystems. U.S. Fish and Wildlife Service Biological Report 86, 66147.Google Scholar
Davis, O.K., Sheppard, J.C., and Robertson, S. (1986). Contrasting climatic histories for the Snake River Plain, Idaho, resulting from multiple thermal maxima. Quaternary Research 26, 321339.CrossRefGoogle Scholar
Dean, W.E. Jr. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. Journal of Sedimentary Petrology 44, 249253.Google Scholar
Doerner, J.P., and Carrara, P.E. (1999). Deglaciation and postglacial vegetation history of the West Mountains, west-central Idaho, U.S.A. Arctic, Antarctic, and Alpine Research 31, 303311.CrossRefGoogle Scholar
Faegri, K., Iverson, J., and Krywinski, K. (1989). Textbook of Pollen Analysis. Wiley, New York.Google Scholar
Foit, F.F. Jr., Mehringer, P.J. Jr., and Sheppard, J.C. (1993). Age, distribution, and stratigraphy of Glacier Peak tephra in eastern Washington and western Montana, United States. Canadian Journal of Earth Science 30, 535552.CrossRefGoogle Scholar
Grimm, E.C. (1985). Data analysis and display. Huntley, B., Webb, T. III (1988). Vegetation History. Kluwer Academic, Dordrecht. 4376.Google Scholar
Hall, S. A. Quaternary pollen analysis and vegetational history of the southwest. in Pollen Records of Late-Quaternary North American Sediments Bryant, V. M. Jr., and Holloway, R. G., Eds., pp. 95123. Am. Assoc. of Stratigraphic Palynologist Foundation, Dallas.Google Scholar
Hallet, D.J., Hills, L.V., and Clague, J.J. (1997). New accelerator mass spectometry radiocarbon ages for the Mazama tephra layer from Kootenay National Park, British Columbia, Canada. Canadian Journal of Earth Sciences 34, 12021209.CrossRefGoogle Scholar
Kapp, R.O. (1969). How to Know Pollen and Spores. Brown, Dubuque.Google Scholar
Legg, T.W., and Baker, R.G. (1980). Palynology of Pinedale sediments, Devlins Park, Boulder County, Colorado. Arctic and Alpine Research 12, 319333.CrossRefGoogle Scholar
MacDonald, G.M. (1989). Postglacial paleoecology of the subalpine forest—Grassland ecotone of southwestern Alberta: New insights on vegetation and climate change in the Canadian Rocky Mountains and adjacent foothills. Paleogeography, Paleoclimatology, Paleoecology 73, 155173.CrossRefGoogle Scholar
Mack, R.N., Rutter, N.W., Bryant, V.M. Jr., and Valstro, S. (1978). Reexamination of postglacial vegetation history in northern Idaho: Hager Pond, Bonner Co. Quaternary Research 10, 241255.CrossRefGoogle Scholar
Mack, R.N., Rutter, N.W., and Valstro, S. (1983). Holocene vegetational history of the Kootenai River Valley, Montana. Quaternary Research 20, 177193.CrossRefGoogle Scholar
Maher, L.J. Jr. (1963). Pollen analysis of surface materials from southern SanJuan Mountains, Colorado. Geological Society of America Bulletin 74, 14851504.CrossRefGoogle Scholar
Mehringer, P.J. Jr. (1987). Late-Quaternary pollen records from the interior Pacific Northwest and northern Great Basin of the United States. Bryant, V.M. Jr., and Holloway, R.G. (1985). Pollen Records of Late-Quaternary North American Sediments. Am. Assoc. of Stratigraphic Palynologist Foundation, Dallas. 167189.Google Scholar
Mehringer, P.J. Jr., Arno, S.F., and Petersen, K.L. (1977). Postglacial history of Lost Trail Pass Bog, Bitterroot Mountains, Montana. Arctic and Alpine Research 9, 345368.CrossRefGoogle Scholar
Mehringer, P.J. Jr., Sheppard, J.C., Foit, F.F. Jr. (1984). The age of the Glacier Peak tephra in west-central Montana. Quaternary Research 21, 3641.CrossRefGoogle Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. (1991). Pollen Analysis. Blackwell Sci, London.Google Scholar
Mullineaux, D.R. (1986). Summary of pre-1980 tephra-fall deposits erupted from Mount St. Helens, Washington State, U.S.A. Bulletin of Volcanology 48, 1726.CrossRefGoogle Scholar
Othberg, K. L. Landforms and surface deposits of Long Valley, Valley County, Idaho. Idaho Geological Survey Map 5, scale approximately 1:62,500.Google Scholar
Schmidt, D.L., and Mackin, J.H. (1970). Quaternary geology of Long and Bear Valleys, west-central Idaho. U.S. Geological Survey Bulletin 22 Google Scholar
Stuiver, M., and Reimer, P.J. (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Thompson, R.S., Whitlock, C., Bartlein, P.J., and Spaulding, W.G. (1992). Climatic changes in the western United States since 18,000 yr B.P. Wright, H.E. Jr., Kutzbach, J.E., Ruddiman, W.F., Street-Perrott, F.A., Webb, T. III (1993). Global climates since the last glacial maximum. Univ. of Minnesota Press, Minneapolis. 468513.Google Scholar
Whitlock, C. (1993). Postglacial vegetation and climate of Grand Teton and southern Yellowstone National Parks. Ecological Monographs 63, 173198.CrossRefGoogle Scholar
Whitlock, C., and Bartlein, P.J. (1993). Spatial variations of Holocene climatic change in the Yellowstone region. Quaternary Research 39, 231238.CrossRefGoogle Scholar
Whitlock, C., Bartlein, P.J., and Van Norman, K.J. (1995). Stability of Holocene climate regimes in the Yellowstone region. Quaternary Research 43, 433436.CrossRefGoogle Scholar
Wright, H.E. Jr., Bent, A.M., Hansen, B.S., Maher, L.J. Jr. (1973). Present and past vegetation of the Chuska Mountains, northwestern New Mexico. Geological Society of America Bulletin 84, 11551180.2.0.CO;2>CrossRefGoogle Scholar
Monthly station normals of temperature, precipiation, and heating and cooling degrees days 1961–90, Idaho. Climatology of the United States, Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Late Quaternary Vegetation and Climatic History of the Long Valley Area, West-Central Idaho, U.S.A.
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Late Quaternary Vegetation and Climatic History of the Long Valley Area, West-Central Idaho, U.S.A.
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Late Quaternary Vegetation and Climatic History of the Long Valley Area, West-Central Idaho, U.S.A.
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *