Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.343 Render date: 2021-03-04T17:22:35.548Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil)

Published online by Cambridge University Press:  30 June 2012

Michael M. McGlue
Department of Geosciences, The University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721, USA
Aguinaldo Silva
Departamento de Ciências do Ambiente, Universidade Federal de Mato Grosso do Sul — UFMS-CPAN, Av. Rio Branco, 1270, CEP 79304‐902, Corumbá, MS, Brazil
Hiran Zani
Divisão de Sensoriamento Remoto, Instituto Nacional de Pesquisas Espaciais — INPE, Av. dos Astronautas, 1758, CEP 12201‐970, São José dos Campos, SP, Brazil
Fabrício A. Corradini
Faculdade de Geografia, Universidade Federal do Pará — UFPA, Folha 31, Quadra 7, Lote Especial S/N, CEP 68501‐970, Marabá, PA, Brazil
Mauro Parolin
Laboratório de Estudos Paleoambientais da Fecilcam (LEPAFE), Faculdade Estadual de Ciências e Letras de Campo Mourão, Av. Comendador Norberto Marcondes, 733, CEP‐87303‐100, Campo Mourão, PR, Brazil
Erin J. Abel
Department of Geosciences, The University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721, USA
Andrew S. Cohen
Department of Geosciences, The University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721, USA
Mario L. Assine
Departamento de Geologia Aplicada — IGCE, Universidade Estadual Paulista — UNESP/Campus Rio Claro, Av. 24-A, 1515, CEP 13506‐900, Rio Claro, SP, Brazil
Geoffrey S. Ellis
Central Energy Resources Science Center, U.S. Geological Survey, PO Box 25046, Denver Federal Center MS 977, Denver, CO 80225, USA
Mark A. Trees
Department of Geosciences, The University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721, USA
Sidney Kuerten
Departamento de Geografia, Universidade Estadual de Mato Grosso do Sul - UEMS, Av. 11 de Dezembro, 1425 Vila Camisão, CEP 79240-000, Jardim, MS, Brazil
Frederico dos Santos Gradella
Programa de Geografia, Universidade Federal do Oeste do Pará — UFOPA, Av. Marechal Rondon, s/n — Caranazal Santarém, CEP 68040‐070, Pará, Brazil
Giliane Gessica Rasbold
Laboratório de Estudos Paleoambientais da Fecilcam (LEPAFE), Faculdade Estadual de Ciências e Letras de Campo Mourão, Av. Comendador Norberto Marcondes, 733, CEP‐87303‐100, Campo Mourão, PR, Brazil
E-mail address:


The Pantanal is the world's largest tropical wetland and a biodiversity hotspot, yet its response to Quaternary environmental change is unclear. To address this problem, sediment cores from shallow lakes connected to the Upper Paraguay River (PR) were analyzed and radiocarbon dated to track changes in sedimentary environments. Stratal relations, detrital particle size, multiple biogeochemical indicators, and sponge spicules suggest fluctuating lake-level lowstand conditions between ~ 11,000 and 5300 cal yr BP, punctuated by sporadic and in some cases erosive flood flows. A hiatus has been recorded from ~ 5300 to 2600 cal yr BP, spurred by confinement of the PR within its channel during an episode of profound regional drought. Sustained PR flooding caused a transgression after ~ 2600 cal yr BP, with lake-level highstand conditions appearing during the Little Ice Age. Holocene PR flood pulse dynamics are best explained by variability in effective precipitation, likely driven by insolation and tropical sea-surface temperature gradients. Our results provide novel support for hypotheses on: (1) stratigraphic discontinuity of floodplain sedimentary archives; (2) late Holocene methane flux from Southern Hemisphere wetlands; and (3) pre-colonial indigenous ceramics traditions in western Brazil.

University of Washington

Access options

Get access to the full version of this content by using one of the access options below.


Aalto, R., Maurice-Bourgoin, L., Dunne, T., Montgomery, D.R., Nittrouer, C.A., and Guyot, J.L. Episodic sediment accumulation on Amazonian flood plains influenced by El Nino/Southern Oscillation. Nature 425, (2003). 493497.CrossRefGoogle ScholarPubMed
Abbott, M.B., Wolfe, B.B., Wolfe, A.P., Seltzer, G.O., Aravena, R., Mark, B.G., Polissar, P.J., Rodbell, D.T., Rowe, H.D., and Vuille, M. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 123138.CrossRefGoogle Scholar
Alho, C.J.R. Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation. Brazilian Journal of Biology 68, (2008). 957966.CrossRefGoogle ScholarPubMed
Aslan, A., and Blum, M.D. Contrasting styles of Holocene avulsion, Texas Gulf Coastal Plain, U.S.A. Smith, N.D., and Rogers, J. Fluvial Sedimentology VI: International Association of Sedimentologists Special Publication. (1999). Google Scholar
Assine, M.L., and Silva, A. Contrasting fluvial styles of the Paraguay River in the northwestern border of the Pantanal wetland, Brazil. Geomorphology 113, (2009). 189199.CrossRefGoogle Scholar
Assine, M.L., and Soares, P.C. Quaternary of the Pantanal, west-central Brazil. Quaternary International 114, (2004). 2334.CrossRefGoogle Scholar
Bastviken, D., Santoro, A.L., Marotta, H., Pinho, L.Q., Calheiros, D.F., Crill, P., and Enrich-Prast, A. Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environmental Science and Technology 44, (2010). 54505455.CrossRefGoogle ScholarPubMed
Climate change and water Bates, B.C., Kundzewicz, Z.W., Wu, S., and Palutikof, J.P. Technical Paper of the Intergovernmental Panel on Climate Change. (2008). IPCC Secretariat, Geneva. 210 pp Google Scholar
Berger, A. Orbital variations and insolation database. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution Series vol. 92‐007, (1992). CO:OAA/NGDC Paleoclimatology Program, Boulder.Google Scholar
Bertaux, J., Sondag, F., Santos, R., Soubies, F., Casse, C., Plagnes, V., Le Cornec, F., and Seidel, F. Palaeoclimatic record of speleothems in a tropical region: study of laminated sequences from a Holocene stalagmite in central-west Brazil. Quaternary International 89, (2002). 316.CrossRefGoogle Scholar
Bird, B.W., Abbott, M.B., Vuille, M., Rodbell, D.T., Stansell, N.D., and Rosenmeier, M.F. A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proceedings of the National Academy of Sciences 108, (2011). 85838588.CrossRefGoogle ScholarPubMed
Bohacs, K.M., Carroll, A.R., and Neal, J.E. Lessons from large lake systems — thresholds, nonlinearity, and strange attractors. Chan, M.A., and Archer, A.W. Extreme Depositional Environments: Mega End Members in Geologic Time. GSA Special Paper 370, (2003). 7590.Google Scholar
Boggiani, P.C., and Coimbra, A.M. Quaternary limestone of the Pantanal area, Brazil. Anais da Academia Brasileira de Ciências 3, 67 (1995). 343349.Google Scholar
Boggiani, P.C., Coimbra, A.M., Gesicki, A.L.D., Sial, A.N., Ferreira, V.P., Ribeiro, F.B., and Flexor, J.M. Tufas Calcárias da Serra da Bodoquena, MS: cachoeiras petrificadas ao longo dos rios. Schobbenhaus, C., Campos, D.A., Queiroz, E.T., Winge, M., and Berbert-Born, M. Sítios Geológicos e Paleontológicos do Brasil. Brasília-DF, DNPM. (2002). 249259.Google Scholar
Bridge, J.S. Large-scale facies sequences in alluvial overbank environments. Journal of Sedimentary Petrology 54, (1984). 583588.Google Scholar
Chauhan, M., and Gopal, B. Biodiversity and management of Keoladeo National Park (India): a wetland of international importance. Biodiversity in Wetlands: Assessment, Function and Conservation. (2001). 2 Backhuys Publishers, Leiden.Google Scholar
CPRM, (2006). Mapa geológico do Brasil na escala 1:1,000,000 — Sheets SE.21 Corumbá and SD.21 Cuiabá. Brazilian Geological Survey, Brasília.Google Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Silva Dias, P.L., Ferrari, J.A., Viana, O. Jr. Insolation driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, (2005). 6366.CrossRefGoogle ScholarPubMed
Cruz, F.W., Vuille, M., Burns, S.J., Wang, X.-F., Cheng, H., Werner, M., Edwards, R.L., Karmann, I., Auler, A.S., and Nguyen, H. Orbitally driven east–west antiphasing of South American precipitation. Nature Geosciences 2, (2009). 210214.CrossRefGoogle Scholar
Davis, T.J. The Ramsar Convention Manual. A Guide to the Convention of Wetlands of International Importance Especially as Waterfowl Habitat. (1994). Ramsar Convention Bureau, Gland, Switzerland.Google Scholar
DeMaster, D.J. (1979). The marine budgets of silica and Si32. Ph.D. thesis, Yale University, .Google Scholar
Fielding, C.R. Upper delta plain lacustrine and fluviolacustrine facies from the Westphalian of the Durham Coalfield, NE England. Sedimentology 31, (1984). 547567.CrossRefGoogle Scholar
Felicissimo, M.P., Peixoto, J.L., Bittencourt, C., Tomasi, R., Houssiau, L., Pireaux, J.-J., and Rodrigues-Filho, U.P. SEM, EPR and ToF-SIMS analyses applied to unravel the technology employed for pottery-making by pre-colonial Indian tribes from Pantanal, Brazil. Journal of Archaeological Science 37, 9 (2010). 21792187.CrossRefGoogle Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., and Marengo, J. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281, (2009). 180195.CrossRefGoogle Scholar
Hamilton, S.K., Sippel, S.J., Calheiros, D.F., and Melack, J.M. An anoxic event and other biogeochemical effects of the Pantanal wetland on the Paraguay River. Limnology and Oceanography 42, (1997). 257272.CrossRefGoogle Scholar
Hamilton, S.K. Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia 657, (2010). 1935.CrossRefGoogle Scholar
Hamilton, S.K. Potential effects of a major navigation project (Paraguay-Parana Hidrovia) on inundation in the Pantanal floodplains. Regulated Rivers: Research & Management 15, (1999). 289299.3.0.CO;2-I>CrossRefGoogle Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Rohl, U. Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, (2001). 13041308.CrossRefGoogle ScholarPubMed
Heimann, M., and Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, (2008). 289292.CrossRefGoogle ScholarPubMed
Heins, W.A., and Kairo, S. Predicting sand character with integrated genetic analysis. Geological Society of America Special Paper 420, (2007). 345379.Google Scholar
Holbrook, J.M. How the ox-bow filled: co‐authored by Big Muddy and Old Man River. PAGES International Floodplain Lakes Workshop Abstracts with Program 25, (2010). Google Scholar
Horton, B.K., and DeCelles, P.G. The modern foreland basin system adjacent to the central Andes. Geology 25, (1997). 895898.2.3.CO;2>CrossRefGoogle Scholar
Junk, W.J., Bayley, P.B., and Sparks, R.E. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106, (1989). 110127.Google Scholar
Junk, W.J., Nunes Da Cunha, K., Wantzen, K.M., Petermann, P., Strussmann, C., Marques, M.I., and Adis, J. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Journal of Aquatic Science 68, 3 (2006). 278309.CrossRefGoogle Scholar
Klammer, G. The paleodesert of the Pantanal of Mato Grosso and the Pleistocene climatic‐history of the central Brazilian tropics. Zeitschrift für Geomorphologie 26, (1982). 393416.Google Scholar
Koutavas, A., DeMenocal, P.B., Olive, G.C., and Lynch-Stieglitz, J. Mid-Holocene El Niño-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34, 12 (2006). 993996.CrossRefGoogle Scholar
Kuerten, S., and Assine, M.L. O rio Paraguai no megaleque do Nabileque, sudoeste do Pantanal Mato-Grossense, MS. Revista Brasileira de Geociências 41, (2011). 642653.CrossRefGoogle Scholar
Ledru, M.P., Bertaux, J., Sifeddine, A., and Suguio, K. Absence of last glacial maximum records in lowland tropical forests. Quaternary Research 49, (1998). 233237.CrossRefGoogle Scholar
Ledru, M.-P., Salgado-Labouriau, M.L., and Lorscheitter, M.L. Vegetation dynamics in southern and central Brazil during the last 10,000 yr B.P. Reviews of Palaeobotany and Palynology 99, (1998). 131142.CrossRefGoogle Scholar
Ledru, M.P. Late Quaternary environmental and climatic changes in central Brazil. Quaternary Research 39, (1993). 9098.CrossRefGoogle Scholar
Lewin, J., Macklin, M.G., and Johnstone, E. Interpreting alluvial archives: sedimentological factors in the British Holocene fluvial record. Quaternary Science Reviews 24, (2005). 18731889.CrossRefGoogle Scholar
Lopes, I., Minõ, C., and Del Lama, S. Genetic diversity and evidence of recent demographic expansion in waterbird populations from the Brazilian Pantanal. Journal of Biology 67, (2007). 849857.Google ScholarPubMed
Marani, L., and Alvalá, P.C. Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmospheric Environment 41, 8 (2007). 16271633.CrossRefGoogle Scholar
Marchant, R., and Hooghiemstra, H. Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Science Reviews 66, (2004). 217260.CrossRefGoogle Scholar
McGlue, M.M., Silva, A., Corradini, F.A., Zani, H., Trees, M.A., Ellis, G.S., Parolin, M., Swarzenski, P.W., Cohen, A.S., and Assine, M.L. Limnogeology in Brazil's “forgotten wilderness”: a synthesis from the floodplain lakes of the Pantanal. Journal of Paleolimnology 46, 2 (2011). 273289.CrossRefGoogle Scholar
Mertes, L.A.K. Rates of flood-plain sedimentation on the central Amazon River. Geology 22, (1994). 171174.2.3.CO;2>CrossRefGoogle Scholar
Meyers, P.A., and Teranes, J.L. Sediment organic matter. Last, W.M., Smol, J.P. Tracking Environmental Change Using Lake Sediments Volume 2: Physical and Geochemical Methods vol 2, (2001). Springer, New York. 239269.CrossRefGoogle Scholar
Mitsch, W.J., Nahlik, A., Wolski, P., Bernal, B., Zhang, L., and Ramberg, L. Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetlands Ecology and Management 18, (2009). 573586.CrossRefGoogle Scholar
Nahlik, A., and Mitsch, W.J. Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Global Change Biology 17, 3 (2011). 13211334.CrossRefGoogle Scholar
Nunes da Cunha, C., and Junk, W.J. Distribuition of wood plant communities along the flood gradient in the Pantanal of Poconé, Mato Grosso, Brazil. International Journal of Ecology and Environmental Science 27, (2001). 6370.Google Scholar
de Oliveira, M.D., and Calheiros, D.F. Flood pulse influence on phytoplankton communities of the south Pantanal floodplain, Brazil. Hydrobiologia 427, (2000). 101112.CrossRefGoogle Scholar
de Oliveira Bezerra, M.A., and Mozeto, A.A. Deposição de carbono orgânico na planície de inundação do Rio Paraguai durante o Holoceno médio. Oecologia Bras 12, (2008). 155171.CrossRefGoogle Scholar
Parolin, M., Volkmer-Ribeiro, C., and Stevaux, J.C. Sponge spicules in peaty sediments as paleoenvironmental indicators of the Holocene in the upper Parana River, Brazil. Revista Brasileira de Paleontologia 10, (2007). 1726.CrossRefGoogle Scholar
Parolin, M., Volkmer-Ribeiro, C., and Stevaux, J.C. Use of spongofacies as a proxy for river-lake paleohydrology in Quaternary deposits of central-western Brazil. Revista Brasileira de Paleontologia 11, (2008). 187198.CrossRefGoogle Scholar
Peixoto, J.L.S. Arqueologia na Região das Grandes Lagoas do Pantanal. Albuquerque Revista de Historia 1, (2009). 193206.Google Scholar
Pinder, L., and Rosso, S. Classification and ordination of plant formations in the Pantanal of Brazil. Plant Ecology 136, (1998). 151165.CrossRefGoogle Scholar
Polissar, P.J., Abbott, M.B., Wolfe, A.P., Bezada, M., Rull, V., and Bradley, R.S. Solar modulation of Little Ice Age climate in the tropical Andes. Proceedings of the National Academy of Science 103, (2006). 89378942.CrossRefGoogle ScholarPubMed
Por, F.D. The Pantanal of Mato Grosso (Brazil). (1995). Kluwer, Dordrecht.CrossRefGoogle Scholar
PRODEAGRO Projeto de Desenvolvimento Agroambiental do Estado de Mato Grosso. Governo do Estado de Mato Grosso. (1997). Meio Biótico, Cuiabá.Google Scholar
Prance, G.T., and Schaller, G.B. Preliminary study of some vegetation types of the Pantanal, Mato Grosso, Brazil. Brittonia 34, (1982). 228251.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Reuter, J., Stott, L., Khider, D., Sinha, A., Cheng, H., and Edwards, R.L. A new perspective on the hydroclimate variability in northern South America during the Little Ice Age. Geophysical Research Letters 36, L2106 (2009). 15.CrossRefGoogle Scholar
Salgado-Labouriau, M.L. Late Quaternary palaeoclimate in the savannas of South America. Journal of Quaternary Science 12, (1997). 371379.3.0.CO;2-3>CrossRefGoogle Scholar
Sallun Filho, W., Karmann, I., Boggiani, P.C., Petri, S., de Souza Cristalli, P., and Utida, G. A Deposição de Tufas Quaternárias no Estado de Mato Grosso do Sul: Proposta de Definição da Formação Serra da Bodoquena. Revista do Instituto de Geociências USP 9, (2009). 4760.Google Scholar
Schnurrenberger, D., Russell, J.M., and Kelts, K. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29, 2 (2003). 141154.CrossRefGoogle Scholar
Seltzer, G.O., Rodbell, D.T., and Burns, S. Isotopic evidence for late Quaternary climatic change in tropical South America. Geology 28, (2000). 3538.2.0.CO;2>CrossRefGoogle Scholar
Shindell, D.T., Walter, B.P., and Faluvegi, G. Impacts of climate change on methane emissions from wetlands. Geophysical Research Letters 31, (2004). L21202 CrossRefGoogle Scholar
Sifeddine, A., Martin, L., Turcq, B., Volkmer-Ribeiro, C., Soubies, F., Cordeiro, R.C., and Suguio, K. Variations of the Amazon rainforest environment: a sedimentological record covering 30,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 168, (2001). 221235.CrossRefGoogle Scholar
da Silva, C.J., and Girard, P. New challenges in the management of the Brazilian Pantanal and catchment area. Wetlands Ecology and Management 12, (2004). 553561.CrossRefGoogle Scholar
Singarayer, J.S., Valdes, P.J., Friedlingstein, P., Nelson, S., and Beerling, D.J. Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470, (2011). 8285.CrossRefGoogle ScholarPubMed
Soares, A.P., Soares, P.C., and Assine, M.L. Areiais e lagoas do Pantanal, Brasil: heranc¸a paleoclimatica?. Revista Brasileira de Geociências 33, (2003). 211224.CrossRefGoogle Scholar
Stevaux, J.C. Climatic events during the Late Pleistocene and Holocene in the Upper Paraná River: correlation with NE Argentina and South-Central Brazil. Quaternary International 72, (2000). 7385.CrossRefGoogle Scholar
Súarez, Y.R., Junior, M.P., and Catella, A.C. Factors regulating diversity and abundance of fish communities in Pantanal lagoons, Brazil. Fisheries Management and Ecology 11, (2004). 4550.CrossRefGoogle Scholar
Talbot, M.R., and Johannessen, T. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth and Planetary Science Letters 110, (1992). 2337.CrossRefGoogle Scholar
Tricart, J. El Pantanal: Un ejemplo del impacto de la geomorfologia sobre el medio ambiente. Geografia 7, (1982). 3750.Google Scholar
Thompson, L.G., Mosely-Thompson, E., Davis, M.E., Lin, P.E., Henderson, A.K., Cole-Dai, B., Bolzan, J.F., and Liu, K. Late glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269, (1995). 4650.CrossRefGoogle ScholarPubMed
Ussami, N., Shiraiwa, S., and Dominguez, J.M.L. Basement reactivation in a sub-Andean foreland flexural bulge: the Pantanal wetland, SW Brazil. Tectonics 18, (1999). 2539.CrossRefGoogle Scholar
Victoria, R.L., Fernandes, F., Martinelli, L.A., Piccolo, M.C., Camargo, P.B., and Trumbore, S. Past vegetation changes in the Brazilian Pantanal-grassy savanna ecotone by using carbon isotopes in the soil organic matter. Global Change Biology 1, (1995). 165171.CrossRefGoogle Scholar
Volkmer-Ribeiro, C., (1999). Esponjas. In: (ed.) Biodiversidade do Estado de São Paulo síntese do conhecimento ao final do século XX. Invertebrados de água doce, . São Paulo., FAPESP 4, (1):119.Google Scholar
Volkmer-Ribeiro, C., and Pauls, S.M. Esponjas de agua dulce (Porifera, Demospongiae) de Venezuela. Acta Biologica Venezuelica 20, (2000). 128.Google Scholar
Volkmer-Ribeiro, C., and Turcq, B. SEM analysis of siliceous spicules of a freshwater sponge indicate paleoenvironmental changes. Acta Microscópica 5, (1996). 186187.Google Scholar
Whitney, B.S., Mayle, F.E., Punyasena, S.W., Fitzpatrick, K.A., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Pennington, R.T., and Metcalfe, S.E. A 45 kyr palaeoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307, (2011). 177192.CrossRefGoogle Scholar
Willis, B.J., and Behrensmeyer, A.K. Architecture of Miocene overbank deposits in northern Pakistan. Journal of Sedimentary Research 64, (1994). 6067.Google Scholar
Wuebbles, D.J., and Hayhoe, K. Atmospheric methane and global change. Earth-Science Reviews 57, (2002). 177210.CrossRefGoogle Scholar
Zedler, J.B., and Kercher, S. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environmental Resources 30, (2005). 3974.CrossRefGoogle Scholar
Zhou, J., and Lau, K.M. Does a monsoon climate exist over South America?. Journal of Climate 11, (1998). 10201040.2.0.CO;2>CrossRefGoogle Scholar

McGlue et al. Supplementary Material

Figure S1


Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 64 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 4th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil)
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil)
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Lacustrine records of Holocene flood pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil)
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *