Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T13:07:40.989Z Has data issue: false hasContentIssue false

Hydroclimate change and its controlling factors during the middle to late Holocene and possible 3.7-ka climatic shift over East Asia

Published online by Cambridge University Press:  10 May 2022

Jaesoo Lim*
Affiliation:
Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
In-Kwon Um
Affiliation:
Petroleum & Marine Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
Sangheon Yi
Affiliation:
Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
Chang-Pyo Jun
Affiliation:
Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
*
*Corresponding author email address: <limjs@kigam.re.kr>

Abstract

The history of past hydroclimatic extreme events, essential information for predicting future changes, is preserved in fluvial sediments. Here, we reconstruct changes in decadal-scale extreme flooding events over the period 7700–1700 cal yr BP from floodplain sediments in the middle reach of the Nakdong River, Korea, based on lithogenic elemental ratios (e.g., Zr/Ti and Sr/Si). For example, Nakdong extreme flooding (NEF) events frequently occurred at 7700, 7200, 6000, 5000, 3800, 3200, 2900, 2600, 2300, 2000, and 1700 cal yr BP, and were associated with higher sea-surface temperatures and strong El Niño-Southern Oscillation (ENSO) activity. Notably, we found a significant change in the frequency of extreme events ca. 3700 cal yr BP over East Asia. The hydroclimate fluctuated with dominant periodicities of 950 and 540 years in 7700–3700 cal yr BP and shorter centennial to decadal cycles (320, 110–120, and 60–75 years) in 3700–1700 cal yr BP. This 3.7-ka climatic shift is consistent with a marked southward shift of the intertropical convergence zone, intensified ENSO activity, increased frequency of recurving typhoons, and deep-ocean circulation changes in both the northern and southern hemispheres, demonstrating the urgent need for investigating the critical role of past deep-water circulation in hydroclimate changes.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

An, Z.S., 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, 171187.CrossRefGoogle Scholar
Bahr, A., Jiménez-Espejo, F.J., Kolasinac, N., Grunert, P., Hernández-Molina, F.J., Röhl, U., Voelker, A.H.L., et al. , 2014. Deciphering bottom current velocity and paleoclimate signals from contourite deposits in the Gulf of Cádiz during the last 140 kyr: an inorganic geochemical approach. Geochemistry, Geophysics, Geosystems 15, 31453160.CrossRefGoogle Scholar
Barr, C., Tibby, J., Leng, M.J., Tyler, J.J., Henderson, A.C.G., Overpeck, J.T., Simpson, G.L., et al. , 2019. Holocene El Niño—southern Oscillation variability reflected in subtropical Australian precipitation. Scientific Reports 9, 1627. https://doi.org/10.1038/s41598-019-38626-3.CrossRefGoogle ScholarPubMed
Benito, G., Thorndycraft, V.R., Rico, M., Sánchez-Moya, Y., Sopeña, A., 2008. Paleoflood and floodplain records from Spain: evidence for long-term climate variability and environmental changes. Geomorphology 101, 6877.CrossRefGoogle Scholar
Carson, E.C., Knox, J.C., Mickelson, D.M., 2007. Response of bankfull flood magnitudes to Holocene climate change, Uinta Mountains, northeastern Utah. Geological Society of America Bulletin 119, 10661078.CrossRefGoogle Scholar
Constantinescu, A.M., Toucanne, S., Dennielou, B., Jorry, S.J., Mulder, T., Lericolais, G., 2015. Evolution of the Danube deep-sea fan since the last glacial maximum: new insights into Black Sea water-level fluctuations. Marine Geology 367, 5068.CrossRefGoogle Scholar
Crosta, X., Debret, M., Denis, D., Courty, M. A., Ther, O., 2007. Holocene long- and short-term climate changes off Adélie Land, East Antarctica. Geochemistry, Geophysics, Geosystems 8, Q11009. https://doi.org/10.1029/2007GC001718.Google Scholar
Croudace, I.W., Rindby, A., Rothwell, R.G., 2006. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geological Society, London, Special Publications 267, 5163.CrossRefGoogle Scholar
Cullen, H.M., Demenocal, P.B., Hemming, S., Hemming, G., Brown, F.H., Guilderson, T., Sirocko, F., 2000. Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28, 379382.2.0.CO;2>CrossRefGoogle Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.CrossRefGoogle Scholar
Elsner, J.B., Liu, K.B., 2003. Examining the ENSO-typhoon hypothesis. Climate Research 25, 4354.CrossRefGoogle Scholar
Farmer, E.J., Chapman, M.R., Andrews, J.E., 2008. Centennial-scale Holocene North Atlantic surface temperatures from Mg/Ca ratios in Globigerina bulloides. Geochemistry, Geophysics, Geosystems 9, Q12029. https://doi.org/10.1029/2008GC002199.CrossRefGoogle Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Rohl, U., 2001. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 13041308.CrossRefGoogle ScholarPubMed
Gouhier, T.C., Grinsted, A., Simko, V., 2021. R package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses, 2021. (Version 0.20.21). https://github.com/tgouhier/biwavelet.Google Scholar
Hijioka, Y., Lin, E., Pereira, J.J., Corlett, R.T., Cui, X., Insarov, G.E., Lasco, R.D., Lindgren, E., Surjan, A., 2014. Asia. In: Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., et al. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA, pp. 13271370.Google Scholar
Huang, C.C., Pang, J.L., Zha, X.C., Su, H.X., Jia, Y.F., Zhu, Y.Z., 2007. Impact of monsoonal climatic change on Holocene overbank flooding along Sushui River, middle reach of the Yellow River, China. Quaternary Science Reviews 26, 22472264.CrossRefGoogle Scholar
Jia, X., Li, H., Lee, H.F., Liu, Z., Lu, Y., Hu, Z.J., Sun, X.Q., Zhao, Z.J., 2021. Agricultural adaptations to topography and climate changes in Central China during the mid- to late-Holocene. The Holocene 31, 17051715.CrossRefGoogle Scholar
Jo, K., Woo, K.S., Lim, H.S., Cheng, H., Edwards, R.L., Wang, Y., Jiang, X., et al. , 2011. Holocene and Eemian climatic optima in the Korean Peninsula based on textural and carbon isotopic records from the stalagmite of the Daeya Cave, South Korea. Quaternary Science Reviews 30, 12181231.CrossRefGoogle Scholar
Jo, K., Woo, K.S., Yi, S., Yang, D.Y., Lim, H.S., Wang, Y., Cheng, H., Edwards, R.L., 2014. Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years. Nature 508, 378382.CrossRefGoogle ScholarPubMed
Knox, J.C., 1993. Large increases in flood magnitude in response to modest changes in climate. Nature 361, 430432.CrossRefGoogle Scholar
Knox, J.C., 2006. Floodplain sedimentation in the upper Mississippi valley: natural versus human accelerated. Geomorphology 79, 286310.CrossRefGoogle Scholar
Korea Institute of Geoscience and Mineral Resources, 2013. Assessment of Natural Aggregate in 2013 (Kyeongbug Province). Aggregate Resources Investigation Report 2013.Google Scholar
Lee, E., Yi, S., Lim, J., Cho, A., Kim, Y., Jo, K.N., 2021. Multi-proxy indications of depositional evolution and paleo-natural disasters (flooding and fire) in the southern part of the Korean Peninsula during the Holocene. Quaternary Science Reviews 263, 107007. https://doi.org/10.1016/j.quascirev.2021.107007.CrossRefGoogle Scholar
Lee, E., Yi, S., Lim, J., Kim, Y., Jo, K.N., Kim, G.Y., 2020. Multi-proxy records of Holocene hydroclimatic and environmental changes on the southern coast of South Korea. Palaeogeography, Palaeoclimatology, Palaeoecology 545, 109642. https://doi.org/10.1016/j.palaeo.2020.109642.CrossRefGoogle Scholar
Li, C.H., Li, Y.X., Zheng, Y.F., Yu, S.Y., Tang, L.Y., Li, BB., Cui, Q.Y., 2018. A high-resolution pollen record from East China reveals large climate variability near the Northgrippian-Meghalayan boundary (around 4200 years ago) exerted societal influence. Palaeogeography, Palaeoclimatology, Palaeoecology 512, 156165.CrossRefGoogle Scholar
Liu, K.-B., Shen, C., Louie, K.-S., 2001. A 1000-year history of typhoon landfalls in Guangdong, southern China, reconstructed from Chinese historical documentary records. Annals of the Association of American Geographers 91, 453464.CrossRefGoogle Scholar
Lim, J., Lee, J.-Y., Hong, S.-S., Kim, J.-Y., 2013. Late Holocene flooding records from the floodplain deposits of the Yugu River, South Korea. Geomorphology 180–181, 109119.CrossRefGoogle Scholar
Lim, J., Lee, J.Y., Hong, S.S., Kim, J.Y., Yi, S., Nahm, W.H., 2017. Holocene changes in flooding frequency in South Korea and their linkage to centennial-to-millennial-scale El Niño-Southern Oscillation activity. Quaternary Research 87, 3748.CrossRefGoogle Scholar
Lim, J., Lee, J.Y., Hong, S.S., Park, S., Lee, E., Yi, S., 2019, Holocene coastal environmental change and ENSO-driven hydroclimatic variability in East Asia. Quaternary Science Reviews 220, 7586.Google Scholar
Lim, J., Yang, D.-Y., Lee, J.-Y., Hong, S.-S., Um, I.K., 2015. Middle Holocene environmental change in central Korea and its linkage to summer and winter monsoon changes. Quaternary Research 84, 3745.CrossRefGoogle Scholar
Liu, F., Feng, Z., 2012. A dramatic climatic transition at ~4000 cal. yr BP and its cultural responses in Chinese cultural domains. The Holocene 22, 11811197.CrossRefGoogle Scholar
Löwemark, L., Chen, H.F., Yang, T.N., Kylander, M., Yu, E.F., Hsu, Y.W., Lee, T.Q., Song, S.R. Jarvis, S., 2011. Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences 40, 12501256.CrossRefGoogle Scholar
Lu, F., Dodson, J., Zhang, W., Yan, H., 2019. Mid to late Holocene environmental change and human impact: a view from Central China. Quaternary Science Reviews 223, 105953. https://doi.org/10.1016/j.quascirev.2019.105953.CrossRefGoogle Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene Epoch. Nature 420, 162165.CrossRefGoogle ScholarPubMed
Luo, W.H., Zhang, J.Z., Yang, Y.Z., Yin, C.L., Shu, J.W., 2015. Late Pleistocene–middle Holocene environmental evolution: phytolith record from the lacustrine deposits of the Chaohu Lake, Anhui. Acta Micropalaeontologica Sinica, 32, 6374.Google Scholar
Oh, Y., Conte, M., Kang, S., Kim, J., Hwang, J., 2017. Population fluctuation and the adoption of food production in prehistoric Korea: using radiocarbon dates as a proxy for population change. Radiocarbon 59, 17611770.Google Scholar
Park, J., Shin, Y.H., Byrne, R., 2016. Late-Holocene vegetation and climate change in Jeju Island, Korea and its implications for ENSO influences. Quaternary Science Reviews 153, 4050.CrossRefGoogle Scholar
Park, J., Han, J., Jin, Q., Bahk, J., Yi, S., 2017. The link between ENSO-like forcing and hydroclimate variability of coastal East Asia during the last millennium. Scientific Reports 7, 8166. https://doi.org/10.1038/s41598-017-08538-1.CrossRefGoogle ScholarPubMed
Park, J., Park, J., Yi, S., Kim, J.C., Lee, E., Choi, J., 2019. Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean Peninsula. Scientific Reports 9, 10806. https://doi.org/10.1038/s41598-019-47264-8.CrossRefGoogle ScholarPubMed
Park, J., Park, J., Yi, S., Lim, J., Kim, J. C., Jin, Q., Choi, J., 2021. Holocene hydroclimate reconstruction based on pollen, XRF, and grain-size analyses and its implications for past societies of the Korean Peninsula. The Holocene 31, 14891500.CrossRefGoogle Scholar
Park, S., Lim, J., Lim, H. S., 2019. Past climate changes over South Korea during MIS3 and MIS1 and their links to regional and global climate changes. Quaternary International 519, 7481.CrossRefGoogle Scholar
R Core Team, 2020. R: A Language and Environment for Statistical Computing. http://www.r-project.org/index.html.Google Scholar
Roth, S., Reijmer, J.J.G, 2005. Holocene millennial to centennial carbonate cyclicity recorded in slope sediments of the Great Bahama Bank and its climatic implications. Sedimentology 52, 161181.CrossRefGoogle Scholar
Sachs, J. P., Blois, J. L., McGee, T., Wolhowe, M., Haberle, S., Clark, G., Atahan, P., 2018. Southward shift of the Pacific ITCZ during the Holocene. Paleoceanography and Paleoclimatology 33, 13831395.CrossRefGoogle Scholar
Schulz, M., Mudelsee, M., 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers and Geosciences 28, 421426.CrossRefGoogle Scholar
Shao, X., Wang, Y., Cheng, H., Kong, X., Wu, J., Edwards, R.L., 2006. Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ18O record from Shennongjia in Central China. Chinese Science Bulletin 51, 221228.CrossRefGoogle Scholar
Stott, L., Cannariato, K., Thunell, R., Huag, G.H., Koutavas, A., Lund, S., 2004. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 5659.CrossRefGoogle ScholarPubMed
Stuiver, M., Braziunas, T.F., 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3, 289305.CrossRefGoogle Scholar
Tian, J., Xie, X., Ma, W., Jin, H., Wang, P., 2011. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea. Paleoceanography 26, PA4202. https://doi.org/10.1029/2010PA002045.CrossRefGoogle Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., et al. , 2008. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, 17911828.CrossRefGoogle Scholar
Weltje, G.J., Tjallingii, R., 2008. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth and Planetary Science Letters 274, 423438.CrossRefGoogle Scholar
Williams, H., Choowong, M., Phantuwongraj, S., Surakietchai, P., Thongkhao, T., Kongsen, S., Simon, E., 2016. Geologic records of Holocene typhoon strikes on the Gulf of Thailand coast. Marine Geology 372, 6678.CrossRefGoogle Scholar
Woodruff, J.D., Donnelly, J.P., Okusu, A., 2009. Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan. Quaternary Science Reviews 28, 17741785.CrossRefGoogle Scholar
Wu, W., Liu, T., 2004. Possible role of the “Holocene Event 3” on the collapse of Neolithic cultures around the Central Plain of China. Quaternary International 117, 153166.Google Scholar
Xiao, H., Deng, W., Liu, X., Chen, X., Guo, Y., Zhao, J.X., Zeng, T., Wei, G., 2021. A rapid cooling event over the western Pacific region during the Middle Bronze Age. Journal of Geophysical Research: JGR Oceans 126, e2020JC016964. https://doi.org/10.1029/2020JC016964.Google Scholar
Zhang, R., Delworth, T.L., 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate 18, 18531860.CrossRefGoogle Scholar
Zhao, J., Tan, L., Yang, Y., Perez-Mejias, C., Brahim, Y.A., Lan, J., Wang, J., et al. , 2021. New insights towards an integrated understanding of NE Asian monsoon during mid to late Holocene. Quaternary Science Reviews 254, 106793. https://doi.org/10.1016/j.quascirev.2020.106793.CrossRefGoogle Scholar