Skip to main content Accessibility help
×
Home

Great earthquakes of variable magnitude at the Cascadia subduction zone

Published online by Cambridge University Press:  20 January 2017


Alan R. Nelson
Affiliation:
Geologic Hazards Team, U.S. Geological Survey, MS 966, PO Box 25046, Denver, CO 80225, USA
Harvey M. Kelsey
Affiliation:
Department of Geology, Humboldt State University, Arcata, CA 95521, USA
Robert C. Witter
Affiliation:
Oregon Department of Geology and Mineral Industries, Coastal Field Office, 313 SW 2nd St., Suite D, Newport, OR 97365, USA
Corresponding
E-mail address:

Abstract

Comparison of histories of great earthquakes and accompanying tsunamis at eight coastal sites suggests plate-boundary ruptures of varying length, implying great earthquakes of variable magnitude at the Cascadia subduction zone. Inference of rupture length relies on degree of overlap on radiocarbon age ranges for earthquakes and tsunamis, and relative amounts of coseismic subsidence and heights of tsunamis. Written records of a tsunami in Japan provide the most conclusive evidence for rupture of much of the plate boundary during the earthquake of 26 January 1700. Cascadia stratigraphic evidence dating from about 1600 cal yr B.P., similar to that for the 1700 earthquake, implies a similarly long rupture with substantial subsidence and a high tsunami. Correlations are consistent with other long ruptures about 1350 cal yr B.P., 2500 cal yr B.P., 3400 cal yr B.P., 3800 cal yr B.P., 4400 cal yr B.P., and 4900 cal yr B.P. A rupture about 700–1100 cal yr B.P. was limited to the northern and central parts of the subduction zone, and a northern rupture about 2900 cal yr B.P. may have been similarly limited. Times of probable short ruptures in southern Cascadia include about 1100 cal yr B.P., 1700 cal yr B.P., 3200 cal yr B.P., 4200 cal yr B.P., 4600 cal yr B.P., and 4700 cal yr B.P. Rupture patterns suggest that the plate boundary in northern Cascadia usually breaks in long ruptures during the greatest earthquakes. Ruptures in southernmost Cascadia vary in length and recurrence intervals more than ruptures in northern Cascadia.


Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below.

References

Abramson, H.F., (1998). Evidence for tsunamis and earthquakes during the last 3500 years from Lagoon Creek, a coastal freshwater marsh, northern California [MS thesis].. Humboldt State University, 76 pp.Google Scholar
Ando, M., (1975). Source mechanisms and tectonic significance of historical earthquakes along the Nankai Trough, Japan. Tectonophysics 27, 119140.CrossRefGoogle Scholar
Atwater, B.F., (1987). Evidence for great Holocene earthquakes along the outer coast of Washington state. Science 236, 942944.CrossRefGoogle ScholarPubMed
Atwater, B.F., (1992). Geologic evidence for earthquakes during the past 2000 years along the Copalis River, southern coastal Washington. Journal of Geophysical Research 97, B2 19011919.CrossRefGoogle Scholar
Atwater, B.F., Hemphill-Haley, E., (1997). Recurrence intervals for great earthquakes of the past 3500 years at northeastern Willapa Bay, Washington.. U.S. Geological Survey Professional Paper 1576, 108 pp.Google Scholar
Atwater, B.F., Stuiver, M., Yamaguchi, D.K., (1991). A radiocarbon test of earthquake magnitude at the Cascadia subduction zone. Nature 353, 156158.CrossRefGoogle Scholar
Atwater, B.F., Nelson, A.R., Clague, J.J., Carver, G.A., Bobrowsky, T., Bourgeois, J., Darienzo, M.E., Grant, W.C., Hemphill-Haley, E., Kelsey, H.M., Jacoby, G.C., Nishenko, S.P., Palmer, S.P., Peterson, C.D., Reinhart, M.A., Yamaguchi, D.K., (1995). Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone. Earthquake Spectra 11, 118.CrossRefGoogle Scholar
Atwater, B.F., Yamaguchi, D.K., Bondevik, S., Barnhardt, W.A., Amidon, L.J., Benson, B.E., Skjerdal, G., Shulene, J.A., Nanayama, F., (2001). Rapid resetting of an estuarine recorder of the 1964 Alaska earthquake. Geological Society of America 113, 11931204.2.0.CO;2>CrossRefGoogle Scholar
Atwater, B.F., Tuttle, M., Schweig, E.S., Rubin, C.M., Yamaguchi, D.K., Hemphill-Haley, E., (2004). Earthquake recurrence inferred from paleoseismology. Gillespie, A.R., Porter, S.C., Atwater, B.F., The Quaternary period in the United States, Developments in Quaternary Science Elsevier, New York.331350.Google Scholar
Atwater, B.F., Musumi-Rokkaku, S., Satake, K. Tsuji, Y., Ueda, K., Yamaguchi, D.K., (2005). The orphan tsunami of 1700–Japanese clues to a parent earthquake in North America, U.S. Geological Survey Professional Paper 1707. 133 p. (published jointly by University of Washington Press, Seattle.).Google Scholar
Bronk Ramsey, C., (2001). Development of the radiocarbon program OxCal. Radiocarbon 43, 355363.CrossRefGoogle Scholar
Charland, J.W., Priest, G.R., (1995). Inventory of critical and essential facilities vulnerable to earthquake or tsunami hazards on the Oregon coast.. Oregon Department of Geology and Mineral Industries Open-File Report O-95-02, 52 p.Google Scholar
Cisternas, M., Atwater, B.F., Torrejón, F., Sawai, Y., Machuca, G., Lagos, M., Eipert, A., Youlton, C., Salgado, I., Kamataki, T., Shishikura, M., Rajendran, C.P., Malik, J.K., Rizal, Y., Husni, M., (2005). Predecessors to the giant 1960 Chile earthquake. Nature 437, 404407.CrossRefGoogle ScholarPubMed
Clague, J.J., (1997). Evidence for large earthquakes at the Cascadia subduction zone. Reviews of Geophysics 35, 439460.CrossRefGoogle Scholar
Clague, J.J., Atwater, B.F., Wang, K., Wang, Y., Wong, I., compilers, (2000a). Geological Society of America Penrose Conference 2000 (Seaside, Oregon, 2–8 June 2000)–Great Cascadia Earthquake Tricentennial, Program Summary and Abstracts.. Oregon Department of Geology and Mineral Industries, Special Paper 33, 156 p.Google Scholar
Clague, J.J., Bobrowsky, T., Hutchinson, I., (2000b). A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard. Quaternary Science Reviews 19, 849863.CrossRefGoogle Scholar
Darienzo, M.E., Peterson, C.D., (1990). Episodic tectonic subsidence of late Holocene salt marshes, northern Oregon central Cascadia margin. Tectonics 9, 122.CrossRefGoogle Scholar
Darienzo, M.E., Peterson, C.D., (1995). Magnitude and frequency of subduction-zone earthquakes along the northern Oregon coast in the past 3,000 years. Oregon Geology 57, 312.Google Scholar
Edwards, R.J., Horton, B.P., (2006). Developing detailed records of relative sea-level change using a foraminiferal transfer function: An example from North Norfolk, U.K.. Philos. Trans. R. Soc. London A 364, 973991.CrossRefGoogle Scholar
Frankel, A.D., Petersen, M.D., Mueller, C.S., Haller, K.M., Wheeler, R.L., Leyendecker, E.V., Wesson, R.L., Harmsen, S.C., Cramer, C.H., Perkins, D.M., Rukstales, K.S., (2002). Documentation for the 2002 update of the national seismic hazard maps.. U.S. Geological Survey Open-File Report 02-420, 33 p. (http://geohazards.cr.usgs.gov/eq/of02-420/OFR02-420.pdf).Google Scholar
Garrison-Laney, C.E., (1998). Diatom evidence for tsunami inundation from Lagoon Creek, a coastal freshwater pond, Del Norte County, California [MS thesis].. Humboldt State University, 97 pp.Google Scholar
Geist, E., Yoshioka, S., (1996). Source parameters controlling the generation and propagation of potential local tsunamis along the Cascadia margin. Natural Hazards 13, 2 151177.CrossRefGoogle Scholar
Goldfinger, C., Kulm, L.D., McNeil, L.C., Watts, P., (2000). Super-scale failure of the southern Oregon Cascadia margin. Pure and Applied Geophysics 157, 11891226.CrossRefGoogle Scholar
Goldfinger, C., Nelson, C.H., Johnson, J.E., (2003). Holocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbidites. Annual Review of Earth and Planetary Sciences 31, 555577.CrossRefGoogle Scholar
Guilbault, J.-P., Clague, J.J., Lapointe, M., (1995). Foraminiferal evidence for the amount of coseismic subsidence during a late Holocene earthquake on Vancouver Island, west coast of Canada. Quaternary Science Reviews 15, 913937.CrossRefGoogle Scholar
Grant, W.C., (1989). Radiocarbon dating of late Holocene coastal subsidence above the Cascadia subduction zone–Compilation for Washington, Oregon, and northern California. EOS, Transactions of the American Geophysical Union 70, 43 1331.Google Scholar
Heaton, T.H., Hartzell, S.H., (1987). Earthquake hazards on the Cascadia subduction zone. Science 236, 162168.CrossRefGoogle ScholarPubMed
Hemphill-Haley, E., (1995). Diatom evidence for earthquake-induced subsidence and tsunami 300 yr ago in southern coastal Washington. Geological Society of America Bulletin 107, 367378.2.3.CO;2>CrossRefGoogle Scholar
Hughes, J.F., Mathewes, R.W., Clague, J.J., (2002). Use of pollen and vascular plants to estimate coseismic subsidence at a tidal marsh near Tofino, British Columbia. Palaeogeography, Palaeoclimatology, Palaeoecology 185, 145161.CrossRefGoogle Scholar
Hyndman, R.D., Wang, K., (1995). The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime. Journal of Geophysical Research 100, 22,13322,154.CrossRefGoogle Scholar
Jacoby, G.C., Carver, G., Wagner, W., (1995). Trees and herbs killed by an earthquake 300 yr ago at Humboldt Bay, California. Geology 23, 7780.2.3.CO;2>CrossRefGoogle Scholar
Jacoby, G.C., Bunker, D.E., Benson, B.E., (1997). Tree-ring evidence for an A.D. 1700 Cascadia earthquake in Washington and northern Oregon. Geology 29, 9991002.2.3.CO;2>CrossRefGoogle Scholar
Kelsey, H.M., Witter, R.C., Hemphill-Haley, E., (1998). Response of a small Oregon estuary to coseismic subsidence and postseismic uplift in the past 300 years. Geology 26, 231234.2.3.CO;2>CrossRefGoogle Scholar
Kelsey, H.M., Witter, R.C., Hemphill-Haley, E., (2002). Plate-boundary earthquakes and tsunamis of the past 5500 years, Sixes River estuary, southern Oregon. Geological Society of America Bulletin 114, 298314.2.0.CO;2>CrossRefGoogle Scholar
Kelsey, H.M., Nelson, A.R., Hemphill-Haley, E., Witter, R., (2005). Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone. Geological Society of America Bulletin 117, 10091032.CrossRefGoogle Scholar
Leonard, L.J., Hyndman, R.D., Mazzotti, S., (2004). Coseismic subsidence in the 1700 great Cascadia earthquake: coastal estimates versus elastic dislocation models. Geological Society of America Bulletin 116, 655670.CrossRefGoogle Scholar
McAdoo, B.G., Watts, P., (2004). Tsunami hazard from submarine landslides on the Oregon continental slope. Marine Geology 203, 235245.CrossRefGoogle Scholar
McCaffrey, R., Goldfinger, C., (1995). Forearc deformation and great subduction earthquakes: implications for Cascadia offshore earthquake potential. Science 267, 856859.CrossRefGoogle ScholarPubMed
McCalpin, J.P., Nelson, A.R., (1996). Introduction to paleoseismology. McCalpin, J.P., Paleoseismology Academic Press, Orlando, FL.132.Google Scholar
Myers, E., Baptista, A.M., Priest, G.R., (1999). Finite element modeling of potential Cascadia subduction zone tsunamis. Science of Tsunami Hazards 17, 318.Google Scholar
Nanayama, F., Satake, K., Furukawa, R., Shimokawa, K., Atwater, B.F., Shigeno, K., Yamaki, S., (2003). Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424, 660663.CrossRefGoogle ScholarPubMed
Nelson, A.R., (1992a). Discordant 14C ages from buried tidal-marsh soils in the Cascadia subduction zone, southern Oregon coast. Quaternary Research 38, 7490.CrossRefGoogle Scholar
Nelson, A.R., (1992b). Holocene tidal-marsh stratigraphy in south-central Oregon–Evidence for localized sudden submergence in the Cascadia subduction zone. Fletcher, C.P., Wehmiller, J.F., Quaternary Coasts of the United States-Marine and Lacustrine Systems. Tulsa, Oklahoma Society for Sedimentary Geology Special Publication no. 48, 287301.Google Scholar
Nelson, A.R., Personius, S.F., (1996). The potential for great earthquakes in Oregon and Washington–An overview of recent coastal geologic studies and their bearing on segmentation of Holocene ruptures, central Cascadia subduction zone.. In: Rogers, A.M., Walsh, T.J., Kockelman, W.J., Priest, G.R. (Eds.), Earthquake hazards in the Pacific Northwest of the United States. U.S. Geological Survey Professional Paper 1560, 91114.Google Scholar
Nelson, A.R., Atwater, B.F., Bradley, L.-A., Stafford, T.W., (1994). AMS 14C correlation of subsided wetland soils using rooted-herb and detrital samples in the Cascadia subduction zone. Geological Society of America Abstracts with Programs 26, 7 A-522.Google Scholar
Nelson, A.R., Atwater, B.F., Bobrowsky, T., Bradley, L.-A., Clague, J.J., Carver, G.A., Darienzo, M.E., Grant, W.C., Krueger, H.W., Sparks, R., Stafford, T.W. Jr., Stuiver, M., (1995). Radiocarbon evidence for extensive plate-boundary rupture about 300 years ago at the Cascadia subduction zone. Nature 378, 371374.CrossRefGoogle Scholar
Nelson, A.R., Shennan, I., Long, A.J., (1996a). Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America. Journal of Geophysical Research 101, B3 61156135.CrossRefGoogle Scholar
Nelson, A.R., Jennings, A.E., Kashima, K., (1996b). An earthquake history derived from stratigraphic and microfossil evidence of relative sea-level change at Coos Bay, southern coastal Oregon. Geological Society of America Bulletin 108, 141154.2.3.CO;2>CrossRefGoogle Scholar
Nelson, A.R., Ota, Y., Umitsu, M., Kashima, K., Matshushima, Y., (1998). Seismic or hydrodynamic control of rapid late-Holocene sea-level rise in southern coastal Oregon, USA?. The Holocene 8, 287299.CrossRefGoogle Scholar
Nelson, A.R., Jennings, A.E., Gerson, L.D., Sherrod, B.L., (2000). Differences in great earthquake rupture extent inferred from tsunami-laid sand and foraminiferal assemblages beneath intertidal marshes at Alsea Bay, central Oregon coast. Geological Society of America Abstracts with Programs 32, 7 A-443.Google Scholar
Petersen, M.D., Cramer, C.H., Frankel, A.D., (2002). Simulations of seismic hazard for the Pacific Northwest of the United States from earthquakes associated with the Cascadia subduction zone. Pure and Applied Geophysics 159, 21472168.CrossRefGoogle Scholar
Peterson, C.D., Darienzo, M.E., (1996). Discrimination of climatic, oceanic and tectonic mechanisms of cyclic marsh burial, Alsea Bay, Oregon.. In: Rogers, A.M., Walsh, T.J., Kockelman, W.J., Priest, G.R. (Eds.), Assessing earthquake hazards and reducing risk in the Pacific Northwest. U.S. Geological Survey Professional Paper 1560, 115146.Google Scholar
Peterson, C.D., Doyle, D.L., Barnett, E.T., (2000). Coastal flooding and beach retreat from coseismic subsidence in the central Cascadia margin, USA. Environmental and Engineering Geoscience 6, 255269.CrossRefGoogle Scholar
Ruff, L.J., (1996). Large earthquakes in subduction zones: segment interaction and recurrence times. Bebout, G.E., Scholl, D.W., Kirby, S.H., Platt, J.P., Subduction Top to Bottom Geophysical Monographs vol. 96, 91104.Google Scholar
Satake, K., Wang, K., Atwater, B.F., (2003). Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. Journal of Geophysical Research 108, B11 2535(10.1029/2003JB002521).CrossRefGoogle Scholar
Sawai, Y., Satake, K., Takanobu, K., Nasu, H., Shishikura, M., Atwater, B.F., Horton, B.P., Kelsey, H.M., Nagumo, T., Yamaguchi, M., (2004). Transient uplift after a 17th-century earthquake along the Kuril subduction zone. Science 306, 19181920.CrossRefGoogle ScholarPubMed
Shennan, I., Hamilton, S.L., (2006). Coseismic and pre-seismic subsidence associated with great earthquakes in Alaska. Quaternary Science Reviews 25, 18.CrossRefGoogle Scholar
Shennan, I., Long, A.J., Rutherford, M.M., Green, F.M., Innes, J.B., Lloyd, J.M., Zong, Y., Walker, K.J., (1996). Tidal marsh stratigraphy, sea-level change and large earthquakes: I. A 5000 Science year record in Washington, USA. Quaternary Reviews 15, 10231059.CrossRefGoogle Scholar
Thatcher, W., (1990). Order and diversity in the modes of circum-Pacific earthquake recurrence. Journal of Geophysical Research 95, B3 26092624.CrossRefGoogle Scholar
Wang, Y., Clark, J.L., (1999). Earthquake damage in Oregon, preliminary estimates of future earthquake losses.. Oregon Department of Geology and Mineral Industries, Special Paper 29, 59 pp.Google Scholar
Wang, Y., He, J., Dragert, H., James, T.S., (2001). Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone. Earth, Planets and Space 53, 295306.CrossRefGoogle Scholar
Weldon, R., Fumal, T., Biasi, G., (2004). Wrightwood and the earthquake cycle: what a long recurrence record tells us about how faults work. GSA Today 14, 410.2.0.CO;2>CrossRefGoogle Scholar
Witter, R.C., Kelsey, H.M., Hemphill-Haley, E., (2001). Pacific storms, El Nino and tsunamis: competing mechanisms for sand deposition in a coastal marsh, Euchre Creek, Oregon. Journal of Coastal Research 17, 563583.Google Scholar
Witter, R.C., Kelsey, H.M., Hemphill-Haley, E., (2003). Great Cascadia earthquakes and tsunamis of the past 6700 years, Coquille River estuary, southern coastal Oregon. Geological Society of America Bulletin 115, 12891306.CrossRefGoogle Scholar
Yamaguchi, D.K., Atwater, B.F., Bunker, D.E., Benson, B.E., Reid, M., (1997). Tree-ring dating the 1700 Cascadia earthquake. Nature 389, 922923.CrossRefGoogle Scholar
Yeats, R.S., (1998). Living with Earthquakes in the Pacific Northwest. Oregon State Univ. Press, Corvallis,OR.309 pp.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-t2s8l Total loading time: 0.372 Render date: 2020-12-02T19:16:57.822Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 19:05:40 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Great earthquakes of variable magnitude at the Cascadia subduction zone
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Great earthquakes of variable magnitude at the Cascadia subduction zone
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Great earthquakes of variable magnitude at the Cascadia subduction zone
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *