Skip to main content Accessibility help
×
Home

Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light

  • H. G. Hiscock (a1), T. W. Hiscock (a2) (a3), D. R. Kattnig (a1), T. Scrivener (a1), A. M. Lewis (a1), D. E. Manolopoulos (a1) and P. J. Hore (a1)...

Abstract

Night-migratory songbirds appear to sense the direction of the Earth's magnetic field via radical pair intermediates formed photochemically in cryptochrome flavoproteins contained in photoreceptor cells in their retinas. It is an open question whether this light-dependent mechanism could be sufficiently sensitive given the low-light levels experienced by nocturnal migrants. The scarcity of available photons results in significant uncertainty in the signal generated by the magnetoreceptors distributed around the retina. Here we use results from Information Theory to obtain a lower bound estimate of the precision with which a bird could orient itself using only geomagnetic cues. Our approach bypasses the current lack of knowledge about magnetic signal transduction and processing in vivo by computing the best-case compass precision under conditions where photons are in short supply. We use this method to assess the performance of three plausible cryptochrome-derived flavin-containing radical pairs as potential magnetoreceptors.

Copyright

Corresponding author

Author for correspondence: P. J. Hore, Email: peter.hore@chem.ox.ac.uk

Footnotes

Hide All
*

Present address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Permanent address: Living Systems Institute and Department of Physics, University of Exeter, Exeter EX4 4QD, UK.

Present address: Department of Chemistry, University of Chicago, 5735 S Ellis Ave, Chicago, IL 60637, USA.

Footnotes

References

Hide All
Al-Khalili, J and Mcfadden, J (2014) Life on the Edge: The Coming of age of Quantum Biology. London: Bantam Press.
Beaudry, NJ and Renner, R (2011) An intuitive proof of the data processing inequality. arXiv:1107.0740 [quant-ph].
Bolte, P, Bleibaum, F, Einwich, A, Günther, A, Liedvogel, M, Heyers, D, Depping, A, Wöhlbrand, L, Rabus, R, Janssen-Bienhold, U and Mouritsen, H (2016) Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons. PLoS One 11, e0147819.
Cai, J, Guerreschi, GG and Briegel, HJ (2010) Quantum control and entanglement in a chemical compass. Physical Review Letters 104, 220502.
Cochran, WW, Mouritsen, H and Wikelski, M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304, 405408.
Cover, TM and Thomas, JA (2012) Elements of Information Theory. Hoboken: John Wiley & Sons.
Cramér, H (1999) Mathematical Methods of Statistics. Princeton: Princeton University Press.
Dodson, CA, Hore, PJ and Wallace, MI (2013) A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception. Trends in Biochemical Sciences 38, 435446.
Gauger, EM, Rieper, E, Morton, JJL, Benjamin, SC and Vedral, V (2011) Sustained quantum coherence and entanglement in the avian compass. Physical Review Letters 106, 040503.
Günther, A, Einwich, A, Sjulstok, E, Feederle, R, Bolte, P, Koch, KW, Solov'yov, IA and Mouritsen, H (2018) Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Current Biology 28, 211223.
Guo, LS, Xu, BM, Zou, J and Shao, B (2017) Quantifying magnetic sensitivity of radical pair based compass by quantum fisher information. Scientific Reports 7, 5826.
Haberkorn, R (1976) Density matrix description of spin-selective radical pair reactions. Molecular Physics 32, 14911493.
Heyers, D, Manns, M, Luksch, H, Güntürkün, O and Mouritsen, H (2007) A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS One 2, e937.
Hilfinger, A, Norman, TM, Vinnicombe, G and Paulsson, J (2016) Constraints on fluctuations in sparsely characterized biological systems. Physical Review Letters 116, 058101.
Hiscock, HG, Worster, S, Kattnig, DR, Steers, C, Jin, Y, Manolopoulos, DE, Mouritsen, H and Hore, PJ (2016) The quantum needle of the avian magnetic compass. Proceedings of the National Academy of Sciences, USA 113, 46344639.
Hiscock, HG, Mouritsen, H, Manolopoulos, DE and Hore, PJ (2017) Disruption of magnetic compass orientation in migratory birds by radiofrequency electromagnetic fields. Biophysical Journal 113, 14751484.
Hogben, HJ, Efimova, O, Wagner-Rundell, N, Timmel, CR and Hore, PJ (2009) Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: origin of Zeeman resonances observed by in vivo EPR spectroscopy. Chemical Physics Letters 480, 118122.
Hogben, HJ, Biskup, T and Hore, PJ (2012) Entanglement and sources of magnetic anisotropy in radical pair-based avian magnetoreceptors. Physical Review Letters 109, 220501.
Hore, PJ and Mouritsen, H (2016) The radical pair mechanism of magnetoreception. Annual Review of Biophysics 45, 299344.
Hubel, DH (1995) Eye, Brain and Vision. New York: W. H. Freeman, Scientific American Library Series.
Huelga, SF and Plenio, MB (2013) Vibrations, quanta and biology. Contemporary Physics 54, 181207.
Ihara, S (1993) Information Theory for Continuous Systems. Singapore: World Scientific.
Jaynes, ET (1957) Information theory and statistical mechanics. Physical Review 106, 620630.
Kattnig, DR (2017) Radical-pair-based magnetoreception amplified by radical scavenging: resilience to spin relaxation. Journal of Physical Chemistry B 121, 1021510227.
Kattnig, DR and Hore, PJ (2017) The sensitivity of a radical pair compass magnetoreceptor can be significantly amplified by radical scavengers. Scientific Reports 7, 11640.
Kattnig, DR, Evans, EW, Déjean, V, Dodson, CA, Wallace, MI, Mackenzie, SR, Timmel, CR and Hore, PJ (2016) Chemical amplification of magnetic field effects relevant to avian magnetoreception. Nature Chemistry 8, 384391.
Kram, YA, Mantey, S and Corbo, JC (2010) Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics. PLoS One 5, e8992.
Lambert, N, Chen, YN, Cheng, YC, Li, CM, Chen, GY and Nori, F (2013) Quantum biology. Nature Physics 9, 1018.
Lau, JCS, Rodgers, CT and Hore, PJ (2012) Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes. Journal of the Royal Society, Interface 9, 33293337.
Lee, AA, Lau, JCS, Hogben, HJ, Biskup, T, Kattnig, DR and Hore, PJ (2014) Alternative radical pairs for cryptochrome-based magnetoreception. Journal of the Royal Society, Interface 11, 20131063.
Lehmann, EL and Casella, G (1998) Theory of Point Estimation. New York: Springer-Verlag.
Lestas, I, Vinnicombe, G and Paulsson, J (2010) Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174178.
Lewis, A (2018) Spin Dynamics in Radical Pairs. Cham: Springer International Publishing.
Liedvogel, M and Mouritsen, H (2010) Cryptochromes – a potential magnetoreceptor: what do we know and what do we want to know? Journal of the Royal Society, Interface 7, S147S162.
Maeda, K, Henbest, KB, Cintolesi, F, Kuprov, I, Rodgers, CT, Liddell, PA, Gust, D, Timmel, CR and Hore, PJ (2008) Chemical compass model of avian magnetoreception. Nature 453, 387390.
Maeda, K, Robinson, AJ, Henbest, KB, Hogben, HJ, Biskup, T, Ahmad, M, Schleicher, E, Weber, S, Timmel, CR and Hore, PJ (2012) Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proceedings of the National Academy of Sciences, USA 109, 47744779.
Manolopoulos, DE and Hore, PJ (2013) An improved semiclassical theory of radical pair recombination reactions. Journal of Chemical Physics 139, 124106.
Marais, A, Adams, B, Ringsmuth, AK, Ferretti, M, Gruber, JM, Hendrikx, R, Schuld, M, Smith, SL, Sinayskiy, I, Kruger, TPJ, Petruccione, F and Van Grondelle, R (2018) The future of quantum biology. Journal of the Royal Society, Interface 15, 20180640.
Mohseni, M, Omar, Y, Engel, GS and Plenio, MB (eds) (2014) Quantum Effects in Biology. Cambridge: Cambridge University Press.
Mouritsen, H (2018) Long-distance navigation and magnetoreception in migratory animals. Nature 558, 5059.
Mouritsen, H, Janssen-Bienhold, U, Liedvogel, M, Feenders, G, Stalleicken, J, Dirks, P and Weiler, R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proceedings of the National Academy of Sciences, USA 101, 1429414299.
Mouritsen, H, Feenders, G, Liedvogel, M, Wada, K and Jarvis, ED (2005) Night-vision brain area in migratory songbirds. Proceedings of the National Academy of Sciences, USA 102, 83398344.
Müller, P and Ahmad, M (2011) Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception. Journal of Biological Chemistry 286, 2103321040.
Nielsen, MA and Chuang, IL (2010) Quantum Computation and Quantum Information. New York: Cambridge University Press.
Nielsen, C, Kattnig, DR, Sjulstok, E, Hore, PJ and Solov'yov, IA (2017) Ascorbic acid may not be involved in cryptochrome-based magnetoreception. Journal of the Royal Society, Interface 14, 20170657.
Niessner, C, Denzau, S, Gross, JC, Peichl, L, Bischof, HJ, Fleissner, G, Wiltschko, W and Wiltschko, R (2011) Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS One 6, e20091.
Niessner, C, Denzau, S, Stapput, K, Ahmad, M, Peichl, L, Wiltschko, W and Wiltschko, R (2013) Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds. Journal of the Royal Society, Interface 10, 20130638.
Niessner, C, Denzau, S, Peichl, L, Wiltschko, W and Wiltschko, R (2014) Magnetoreception in birds: i. Immunohistochemical studies concerning the cryptochrome cycle. Journal of Experimental Biology 217, 42214224.
Niessner, C, Gross, JC, Denzau, S, Peichl, L, Fleissner, G, Wiltschko, W and Wiltschko, R (2016) Seasonally changing cryptochrome 1b expression in the retinal ganglion cells of a migrating passerine bird. PLoS One 11, e0150377.
Ritz, T, Adem, S and Schulten, K (2000) A model for photoreceptor-based magnetoreception in birds. Biophysical Journal 78, 707718.
Ritz, T, Wiltschko, R, Hore, PJ, Rodgers, CT, Stapput, K, Thalau, P, Timmel, CR and Wiltschko, W (2009) Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophysical Journal 96, 34513457.
Shannon, CE (1948) A mathematical theory of communication. Bell System Technical Journal 27, 379423.
Shannon, CE (1959) Coding a discrete information source with a distortion measure. IRE National Convention Record 4, 142163.
Sheppard, DMW, Li, J, Henbest, KB, Neil, SRT, Maeda, K, Storey, J, Schleicher, E, Biskup, T, Rodriguez, R, Weber, S, Hore, PJ, Timmel, CR and Mackenzie, SR (2017) Millitesla magnetic field effects on the photocycle of Drosophila melanogaster cryptochrome. Scientific Reports 7, 42228.
Solov'yov, IA and Schulten, K (2009) Magnetoreception through cryptochrome may involve superoxide. Biophysical Journal 96, 48044813.
Steiner, UE and Ulrich, T (1989) Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews 89, 51147.
Thomas, RJ, Szekely, T, Cuthill, IC, Harper, DGC, Newson, SE, Frayling, TD and Wallis, PD (2002) Eye size in birds and the timing of song at dawn. Proceedings of the Royal Society B 269, 831837.
Timmel, CR, Till, U, Brocklehurst, B, Mclauchlan, KA and Hore, PJ (1998) Effects of weak magnetic fields on free radical recombination reactions. Molecular Physics 95, 7189.
Vitalis, KM and Kominis, IK (2017) Quantum-limited biochemical magnetometers designed using the Fisher information and quantum reaction control. Physical Review A 95, 032129.
Voter, AF (2007) Introduction to the kinetic Monte Carlo method. In Sickafus, KE, Kotomin, EA and Uberuaga, BP (eds), Radiation Effects in Solids. NATO Science Series, vol. 235. Dordrecht: Springer.
Warrant, EJ (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Research 39, 16111630.
Wiltschko, W (1968) Über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Zeitschrift fuer Tierpsychologie 25, 537558.
Wiltschko, W and Wiltschko, R (1972) Magnetic compass of European robins. Science 176, 6264.
Wiltschko, R and Wiltschko, W (1995) Magnetic Orientation in Animals. Berlin: Springer Verlag.
Worster, S, Mouritsen, H and Hore, PJ (2017) A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. Journal of the Royal Society, Interface 14, 20170405.
Zapka, M, Heyers, D, Hein, CM, Engels, S, Schneider, NL, Hans, J, Weiler, S, Dreyer, D, Kishkinev, D, Wild, JM and Mouritsen, H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461, 12741278.
Zapka, M, Heyers, D, Liedvogel, M, Jarvis, ED and Mouritsen, H (2010) Night-time neuronal activation of Cluster N in a day- and night-migrating songbird. European Journal of Neuroscience 32, 619624.

Keywords

Type Description Title
PDF
Supplementary materials

Hiscock et al. supplementary material
Hiscock et al. supplementary material

 PDF (375 KB)
375 KB

Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light

  • H. G. Hiscock (a1), T. W. Hiscock (a2) (a3), D. R. Kattnig (a1), T. Scrivener (a1), A. M. Lewis (a1), D. E. Manolopoulos (a1) and P. J. Hore (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed