Skip to main content Accessibility help

In silico ADME/T modelling for rational drug design

  • Yulan Wang (a1), Jing Xing (a1), Yuan Xu (a1), Nannan Zhou (a2), Jianlong Peng (a1), Zhaoping Xiong (a3), Xian Liu (a1), Xiaomin Luo (a1), Cheng Luo (a1), Kaixian Chen (a1), Mingyue Zheng (a1) and Hualiang Jiang (a1) (a2) (a3)...


In recent decades, in silico absorption, distribution, metabolism, excretion (ADME), and toxicity (T) modelling as a tool for rational drug design has received considerable attention from pharmaceutical scientists, and various ADME/T-related prediction models have been reported. The high-throughput and low-cost nature of these models permits a more streamlined drug development process in which the identification of hits or their structural optimization can be guided based on a parallel investigation of bioavailability and safety, along with activity. However, the effectiveness of these tools is highly dependent on their capacity to cope with needs at different stages, e.g. their use in candidate selection has been limited due to their lack of the required predictability. For some events or endpoints involving more complex mechanisms, the current in silico approaches still need further improvement. In this review, we will briefly introduce the development of in silico models for some physicochemical parameters, ADME properties and toxicity evaluation, with an emphasis on the modelling approaches thereof, their application in drug discovery, and the potential merits or deficiencies of these models. Finally, the outlook for future ADME/T modelling based on big data analysis and systems sciences will be discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      In silico ADME/T modelling for rational drug design
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      In silico ADME/T modelling for rational drug design
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      In silico ADME/T modelling for rational drug design
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Author for correspondence: Mingyue Zheng, Hualiang Jiang, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. Tel.: 86-21-508066-1308 (M.Z.) or 86-21-508066-1303 (H.J.); Email: (M.Z.) or (H.J.)


Hide All
Aarons, L. (2005). Physiologically based pharmacokinetic modelling: a sound mechanistic basis is needed. British Journal of Clinical Pharmacology 60, 581583.
Adams, S. E. (2010). Molecular Similarity and Xenobiotic Metabolism. Ph.D. thesis, University of Cambridge.
Agoram, B., Woltosz, W. S. & Bolger, M. B. (2001). Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Advanced Drug Delivery Reviews 50, S41S67.
Ahlström, M. M., Ridderstr, M. M., Zamora, I. & Luthman, K. (2007). CYP2C9 structure-metabolism relationships: optimizing the metabolic stability of COX-2 inhibitors. Journal of Medicinal Chemistry 50, 44444452.
Ali, J., Camilleri, P., Brown, M. B., Hutt, A. J. & Kirton, S. B. (2012a). In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties. Journal of Chemical Information and Modeling 52, 29502957.
Ali, J., Camilleri, P., Brown, M. B., Hutt, A. J. & Kirton, S. B. (2012b). Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. Journal of Chemical Information and Modeling 52, 420428.
Altenburger, R., Scholz, S., Schmitt-Jansen, M., Busch, W. & Eschert, B. I. (2012). Mixture toxicity revisited from a toxicogenomic perspective. Environmental Science & Technology 46, 25082522.
Ames, B. N., Mccann, J. & Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with salmonella-mammalian-microsome mutagenicity test. Mutation Research 31, 347363.
Arnott, J. A. & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery 7, 863875.
Aronov, A. M. (2005). Predictive in silico modeling for hERG channel blockers. Drug Discovery Today 10, 149155.
Artursson, P. & Karlsson, J. (1991). Correlation between oral-drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochemical and Biophysical Research Communications 175, 880885.
Bakken, G. A. & Jurs, P. C. (2000). Classification of multidrug-resistance reversal agents using structure-based descriptors and linear discriminant analysis. Journal of Medicinal Chemistry 43, 45344541.
Balogh, G. T., Tarcsay, Á. & Keserű, G. M. (2012). Comparative evaluation of pK a prediction tools on a drug discovery dataset. Journal of Pharmaceutical and Biomedical Analysis 67, 6370.
Bar-Yam, Y. (2004). Making Things Work: Solving Complex Problems in a Complex World. Cambridge, MA: NECSI Knowledge Press.
Benfenati, E., Benigni, R., Demarini, D. M., Helma, C., Kirkland, D., Martin, T. M., Mazzatorta, P., Ouedraogo-Arras, G., Richard, A. M., Schilter, B., Schoonen, W. G., Snyder, R. D. & Yang, C. (2009). Predictive models for carcinogenicity and mutagenicity: frameworks, state-of-the-art, and perspectives. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews 27, 5790.
Best, S. A., Merz, K. M. & Reynolds, C. H. (1999). Study of octanol/water partition coefficients: comparison with continuum GB/SA calculations. Journal of Physical Chemistry B 103, 714726.
Bicker, J., Alves, G., Fortuna, A. & Falcao, A. (2014). Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. European Journal of Pharmaceutics and Biopharmaceutics 87, 409432.
Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry 4, 9098.
Boyer, S., Arnby, C. H., Carlsson, L., Smith, J., Stein, V. & Glen, R. C. (2007). Reaction site mapping of xenobiotic biotransformations. Journal of Chemical Information and Modeling 47, 583590.
Butcher, E. C., Berg, E. L. & Kunkel, E. J. (2004). Systems biology in drug discovery. Nature Biotechnology 22, 12531259.
Button, W. G., Judson, P. N., Long, A. & Vessey, J. D. (2003). Using absolute and relative reasoning in the prediction of the potential metabolism of xenobiotics. Journal of Chemical Information and Computer Sciences 43, 13711377.
Cabrera, M. A., Gonz Lez, I., Fern Ndez, C., Navarro, C. & Bermejo, M. (2006). A topological substructural approach for the prediction of P-glycoprotein substrates. Journal of Pharmaceutical Sciences 95, 589606.
Carpenter, T. S., Kirshner, D. A., Lau, E. Y., Wong, S. E., Nilmeier, J. P. & Lightstone, F. C. (2014). A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophysical Journal 107, 630641.
Charifson, P. S. & Walters, W. P. (2014). Acidic and basic drugs in medicinal chemistry: a perspective. Journal of Medicinal Chemistry 57, 97019717.
Chen, C. L. P. & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: a survey on big data. Information Sciences 275, 314347.
Cheng, F. X., Li, W. H., Liu, G. X. & Tang, Y. (2013). In silico ADMET prediction: recent advances, current challenges and future trends. Current Topics in Medicinal Chemistry 13, 12731289.
Clark, D. E. (2003). In silico prediction of blood-brain barrier permeation. Drug Discovery Today 8, 927933.
Clark, D. E. & Pickett, S. D. (2000). Computational methods for the prediction of ‘drug-likeness’. Drug Discovery Today 5, 4958.
Clark, J. & Perrin, D. D. (1964). Prediction of the strengths of organic bases. Quarterly Reviews 18, 295320.
Colmenarejo, G., Alvarez-Pedraglio, A. & Lavandera, J. L. (2001). Cheminformatic models to predict binding affinities to human serum albumin. Journal of Medicinal Chemistry 44, 43704378.
Congreve, M., Carr, R., Murray, C. & Jhoti, H. (2003). A ‘rule of three'for fragment-based lead discovery? Drug Discovery Today 8, 876877.
Contrera, J. F., Matthews, E. J. & Benz, R. D. (2003). Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices. Regulatory Toxicology and Pharmacology 38, 243259.
Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. (2013). The future of peptide-based drugs. Chemical Biology & Drug Design 81, 136147.
Cramer, C. J. & Truhlar, D. G. (1999). Implicit solvation models: equilibria, structure, spectra, and dynamics. Chemical Reviews 99, 21612200.
Crivori, P., Reinach, B., Pezzetta, D. & Poggesi, I. (2006). Computational models for identifying potential P-glycoprotein substrates and inhibitors. Molecular Pharmaceutics 3, 3344.
Davis, A. P., Murphy, C. G., Johnson, R., Lay, J. M., Lennon-Hopkins, K., Saraceni-Richards, C., Sciaky, D., King, B. L., Rosenstein, M. C., Wiegers, T. C. & Mattingly, C. J. (2013). The Comparative Toxicogenomics Database: update 2013. Nucleic Acids Research 41(D1), D1104D1114.
Decristofaro, M. F. & Daniels, K. K. (2008). Toxicogenomics in biomarker discovery. In Essential Concepts in Toxicogenomics, vol. 460 (eds. Mendrick, D. L. and Mattes, W. B.), pp. 185194. New York: Humana Press.
Delisle, R. K., Lowrie, J. F., Hobbs, D. W. & Diller, D. J. (2005). Computational ADME/Tox modeling: aiding understanding and enhancing decision making in drug design. Current Computer-Aided Drug Design 1, 325345.
Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R. & Preissner, R. (2014). ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Research 42(W1), W53W58.
Durrant, J. D. & Mccammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology 9, 71.
ECHA Guidance on Information Requirements and Chemical Safety Assessment (2008). Chapter R. 6: QSARs and grouping of chemicals. Helsinki, Finland: European Chemicals Agency.
Edginton, A. N., Theil, F. P., Schmitt, W. & Willmann, S. (2008). Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opinion on Drug Metabolism & Toxicology 4, 11431152.
Ekins, S., Kim, R. B., Leake, B. F., Dantzig, A. H., Schuetz, E. G., Lan, L. B., Yasuda, K., Shepard, R. L., Winter, M. A., Schuetz, J. D., Wikel, J. H. & Wrighton, S. A. (2002a). Application of three-dimensional quantitative structure-activity relationships of P-glycoprotein inhibitors and substrates. Molecular Pharmacology 61, 974981.
Ekins, S., Kim, R. B., Leake, B. F., Dantzig, A. H., Schuetz, E. G., Lan, L. B., Yasuda, K., Shepard, R. L., Winter, M. A., Schuetz, J. D., Wikel, J. H. & Wrighton, S. A. (2002b). Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Molecular Pharmacology 61, 964973.
Eldred, D. V. & Jurs, P. C. (1999). Prediction of acute mammalian toxicity of organophosphorus pesticide compounds from molecular structure. SAR and QSAR in Environmental Research 10, 7599.
Enslein, K., Lander, T. R., Tomb, M. E. & Craig, P. N. (1989). A predictive model for estimating rat oral LD50 values. Toxicology and Industrial Health 5, 265387.
Ertl, P. (1997). Simple quantum chemical parameters as an alternative to the Hammett sigma constants in QSAR studies. Quantitative Structure-Activity Relationships 16, 377382.
Flower, D. R. (2012). Chapter 15. The impact of genomics, systems biology, and bioinformatics on drug and target discovery: challenge and opportunity. In Drug Design Strategies: Quantitative Approaches (eds. Livingstone, D. J. and Davis, A. M.), pp. 397439. Cambridge: The Royal Society of Chemistry.
Fogolari, F., Brigo, A. & Molinari, H. (2002). The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. Journal of Molecular Recognition 15, 377392.
Gao, H., Steyn, S. J., Chang, G. & Lin, J. (2010). Assessment of in silico models for fraction of unbound drug in human liver microsomes. Expert Opinion on Drug Metabolism & Toxicology 6, 533542.
Garg, P. & Verma, J. (2006). In silico prediction of blood brain barrier permeability: an artificial neural network model. Journal of Chemical Information and Modeling 46, 289297.
Garrido, N. M., Queimada, A. J., Jorge, M., Macedo, E. A. & Economou, I. G. (2009). 1-Octanol/Water partition coefficients of n-alkanes from molecular simulations of absolute solvation free energies. Journal of Chemical Theory and Computation 5, 24362446.
Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S., Michalovich, D., Al-Lazikani, B. & Overington, J. P. (2012). ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Research 40(D1), D1100D1107.
Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. (2011). Probing the links between in vitro potency, ADMET and physicochemical parameters. Nature Reviews Drug Discovery 10, 197208.
Gleeson, M. P. & Montanari, D. (2012). Strategies for the generation, validation and application of in silico ADMET models in lead generation and optimization. Expert Opinion on Drug Metabolism & Toxicology 8, 14351446.
Gombar, V. K., Polli, J. W., Humphreys, J. E., Wring, S. A. & Serabjit-Singh, C. S. (2004). Predicting P-glycoprotein substrates by a quantitative structure-activity relationship model. Journal of Pharmaceutical Sciences 93, 957968.
Grant, D. J. & Higuchi, T. (1990). Solubility behavior of organic compounds. Techniques of Chemistry, Book 51. New York: Wiley-Interscience.
Greene, N. (2002). Computer systems for the prediction of toxicity: an update. Advanced Drug Delivery Reviews 54, 417431.
Guo, J. X., Wu, J. J. Q., Wright, J. B. & Lushington, G. H. (2006). Mechanistic insight into acetylcholinesterase inhibition and acute toxicity of organophosphorus compounds: a molecular modeling study. Chemical Research in Toxicology 19, 209216.
Hall, M. L., Jorgensen, W. L. & Whitehead, L. (2013). Automated ligand- and structure-based protocol for in silico prediction of human serum albumin binding. Journal of Chemical Information and Modeling 53, 907922.
Hammett, L. P. (1935). Some relations between reaction rates and equilibrium constants. Chemical Reviews 17, 125136.
Hammett, L. P. (1937). The effect of structure upon the reactions of organic compounds benzene derivatives. Journal of the American Chemical Society 59, 96103.
Hartung, T. (2009). Toxicology for the twenty-first century. Nature 460, 208212.
Hewitt, M., Cronin, M. T. D., Enoch, S. J., Madden, J. C., Roberts, D. W. & Dearden, J. C. (2009). In silico prediction of aqueous solubility: the solubility challenge. Journal of Chemical Information and Modeling 49, 25722587.
Ho, J. M. & Coote, M. L. (2010). A universal approach for continuum solvent pK(a) calculations: are we there yet? Theoretical Chemistry Accounts 125, 321.
Hou, T. J., Wang, J. M., Zhang, W., Wang, W. & Xu, X. (2006). Recent advances in computational prediction of drug absorption and permeability in drug discovery. Current Medicinal Chemistry 13, 26532667.
Huang, J. P., Ma, G. L., Muhammad, I. & Cheng, Y. Y. (2007). Identifying P-glycoprotein substrates using a support vector machine optimized by a particle swarm. Journal of Chemical Information and Modeling 47, 16381647.
Huang, S. & Rowland, M. (2012). The role of physiologically based pharmacokinetic modeling in regulatory review. Clinical Pharmacology & Therapeutics 91, 542549.
Huang, S. M., Abernethy, D. R., Wang, Y. N., Zhao, P. & Zineh, I. (2013). The utility of modeling and simulation in drug development and regulatory review. Journal of Pharmaceutical Sciences 102, 29122923.
Huang, W., Lee, S. L. & Yu, L. X. (2009). Mechanistic approaches to predicting oral drug absorption. The AAPS Journal 11, 217224.
Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., Decrescenzo, G. A., Devraj, R. V., Ellsworth, E., Fobian, Y. M., Gibbs, M. E., Gilles, R. W., Greene, N., Huang, E., Krieger-Burke, T., Loesel, J., Wager, T., Whiteley, L. & Zhang, Y. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & Medicinal Chemistry Letters 18, 48724875.
Jacobs, P. L., Ridder, L., Ruijken, M., Rosing, H., Jager, N. G., Beijnen, J. H., Bas, R. R. & Van Dongen, W. D. (2013). Identification of drug metabolites in human plasma or serum integrating metabolite prediction, LC-HRMS and untargeted data processing. Bioanalysis 5, 21152128.
Jain, N. & Yalkowsky, S. H. (2001). Estimation of the aqueous solubility I: application to organic nonelectrolytes. Journal of Pharmaceutical Sciences 90, 234252.
Jirouskova, Z., Varekova, R. S., Vanek, J. & Koca, J. (2009). Electronegativity equalization method: parameterization and validation for organic molecules using the merz-kollman-singh charge distribution scheme. Journal of Computational Chemistry 30, 11741178.
Jorgensen, W. L. (2004). The many roles of computation in drug discovery. Science 303, 18131818.
Jorgensen, W. L. & Duffy, E. M. (2002). Prediction of drug solubility from structure. Advanced Drug Delivery Reviews 54, 355366.
Jung, E., Kim, J., Kim, M., Jung, D. H., Rhee, H., Shin, J.-M., Choi, K., Kang, S.-K., Kim, M.-K. & Yun, C.-H. (2007). Artificial neural network models for prediction of intestinal permeability of oligopeptides. BMC Bioinformatics 8, 245.
Kalyaanamoorthy, S. & Chen, Y. P. P. (2011). Structure-based drug design to augment hit discovery. Drug Discovery Today 16, 831839.
Kazius, J., Mcguire, R. & Bursi, R. (2005). Derivation and validation of toxicophores for mutagenicity prediction. Journal of Medicinal Chemistry 48, 312320.
Kell, D. B. & Goodacre, R. (2014). Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discovery Today 19, 171182.
Khanna, I. (2012). Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discovery Today 17, 10881102.
Kido, Y., Matsson, P. & Giacomini, K. (2011). Profiling of a prescription drug library for potential renal drug-drug interactions mediated by the organic cation transporter 2. Journal of Medicinal Chemistry 54, 45484558.
Kienhuis, A. S., Bessems, J. G. M., Pennings, J. L. A., Driessen, M., Luijten, M., Van Delft, J. H. M., Peijnenburg, A. A. C. M. & van der Ven, L. T. M. (2011). Application of toxicogenomics in hepatic systems toxicology for risk assessment: acetaminophen as a case study. Toxicology and Applied Pharmacology 250, 96107.
Kirchmair, J., Williamson, M. J., Afzal, A. M., Tyzack, J. D., Choy, A. P., Howlett, A., Rydberg, P. & Glen, R. C. (2013). FAst MEtabolizer (FAME): a rapid and accurate predictor of sites of metabolism in multiple species by endogenous enzymes. Journal of Chemical Information and Modeling 53, 28962907.
Kirchmair, J., Williamson, M. J., Tyzack, J. D., Tan, L., Bond, P. J., Bender, A. & Glen, R. C. (2012). Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. Journal of Chemical Information and Modeling 52, 617648.
Klopman, G. (1992). A hierarchical computer automated structure evaluation program.1. Quantitative Structure-Activity Relationships 11, 176184.
Klopman, G., Dimayuga, M. & Talafous, J. (1994). META.1. A program for the evaluation of metabolic transformation of chemicals. Journal of Chemical Information and Computer Sciences 34, 13201325.
Klopman, G., Tu, M. H. & Talafous, J. (1997). META.3. A genetic algorithm for metabolic transform priorities optimization. Journal of Chemical Information and Computer Sciences 37, 329334.
Kongsbak, K., Hadrup, N., Audouze, K. & Vinggaard, A. M. (2014). Applicability of computational systems biology in toxicology. Basic & Clinical Pharmacology & Toxicology 115, 4549.
Kovalenko, A. & Hirata, F. (2000). Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach. Journal of Chemical Physics 112, 1039110402.
Kujawski, J., Popielarska, H., Myka, A., Drabińska, B. & Bernard, M. K. (2012). The log P parameter as a molecular descriptor in the computer-aided drug design–an overview. Computational Methods in Science and Technology 18, 8188.
Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., Lerner, J., Brunet, J.-P., Subramanian, A., Ross, K. N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S. A., Haggarty, S. J., Clemons, P. A., Wei, R., Carr, S. A., Lander, E. S. & Golub, T. R. (2006). The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 19291935.
Lanevskij, K., Dapkunas, J., Juska, L., Japertas, P. & Didziapetris, R. (2011). QSAR analysis of blood-brain distribution: the influence of plasma and brain tissue binding. Journal of Pharmaceutical Sciences 100, 21472160.
Lanevskij, K., Japertas, P. & Didziapetris, R. (2012). Classification of drugs by CNS access: an insight from quantitative blood-brain transport characteristics. Abstracts of Papers of the American Chemical Society 243, 1. Washington, D.C.: American Chemical Society.
Lanevskij, K., Japertas, P. & Didziapetris, R. (2013). Improving the prediction of drug disposition in the brain. Expert Opinion on Drug Metabolism & Toxicology 9, 473486.
Leeson, P. D. & Oprea, T. I. (2011). Drug-like physicochemical properties. In Drug Design Strategies: Quantitative Approaches (eds. Livingstone, D. J. and Davis, A. M.), pp. 3559. Cambridge: Royal Society of Chemistry.
Leeson, P. D. & Springthorpe, B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews Drug Discovery 6, 881890.
Li, H. Y., Chen, Z. X., Xu, X. J., Sui, X. F., Guo, T., Liu, W. & Zhang, J. W. (2011a). Predicting human plasma protein binding of drugs using plasma protein interaction QSAR analysis (PPI-QSAR). Biopharmaceutics & Drug Disposition 32, 333342.
Li, J. N., Schneebeli, S. T., Bylund, J., Farid, R. & Friesner, R. A. (2011b). IDSite: an accurate approach to predict p450-mediated drug metabolism. Journal of Chemical Theory and Computation 7, 38293845.
Li, W. X., Li, L. P., Eksterowicz, J., Ling, X. F. B. & Cardozo, M. (2007). Significance analysis and multiple pharmacophore models for differentiating P-glycoprotein substrates. Journal of Chemical Information and Modeling 47, 24292438.
Li, X., Chen, L., Cheng, F., Wu, Z., Bian, H., Xu, C., Li, W., Liu, G., Shen, X. & Tang, Y. (2014). In silico prediction of chemical acute oral toxicity using multi-classification methods. Journal of Chemical Information and Modeling 54, 10611069.
Liao, C. Z. & Nicklaus, M. C. (2009). Comparison of nine programs predicting pK(a) values of pharmaceutical substances. Journal of Chemical Information and Modeling 49, 28012812.
Liljefors, T., Krogsgaard-Larsen, P. & Madsen, U. (2002). Textbook of Drug Design and Discovery. New York: CRC Press.
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 23, 325.
Liu, L. L., Lu, J., Lu, Y., Zheng, M. Y., Luo, X. M., Zhu, W. L., Jiang, H. L. & Chen, K. X. (2014). Novel Bayesian classification models for predicting compounds blocking hERG potassium channels. Acta Pharmacologica Sinica 35, 10931102.
Llinas, A., Glen, R. C. & Goodman, J. M. (2008). Solubility challenge: can you predict solubilities of 32 molecules using a database of 100 reliable measurements? Journal of Chemical Information and Modeling 48, 12891303.
Lu, J., Peng, J. L., Wang, J. N., Shen, Q. C., Bi, Y., Gong, L. K., Zheng, M. Y., Luo, X. M., Zhu, W. L., Jiang, H. L. & Chen, K. X. (2014). Estimation of acute oral toxicity in rat using local lazy learning. Journal of Cheminformatics 6, 26.
Lusci, A., Pollastri, G. & Baldi, P. (2013). Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. Journal of Chemical Information and Modeling 53, 15631575.
Lusher, S. J., Mcguire, R., Van Schaik, R. C., Nicholson, C. D. & De Vlieg, J. (2014). Data-driven medicinal chemistry in the era of big data. Drug Discovery Today 19, 859868.
MA'AYAN, A., Rouillard, A. D., Clark, N. R., Wang, Z., Duan, Q. & Kou, Y. (2014). Lean Big Data integration in systems biology and systems pharmacology. Trends in Pharmacological Sciences 35, 450460.
Manallack, D. T. (2009). The acid-base profile of a contemporary set of drugs: implications for drug discovery. SAR and QSAR in Environmental Research 20, 611655.
Manallack, D. T., Prankerd, R. J., Yuriev, E., Oprea, T. I. & Chalmers, D. K. (2013). The significance of acid/base properties in drug discovery. Chemical Society Reviews 42, 485496.
Manchester, J., Walkup, G., Rivin, O. & You, Z. (2010). Evaluation of pK a estimation methods on 211 druglike compounds. Journal of Chemical Information and Modeling 50, 565571.
Mannhold, R., Poda, G. I., Ostermann, C. & Tetko, I. V. (2009). Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96 000 compounds. Journal of Pharmaceutical Sciences 98, 861893.
Martins, I. F., Teixeira, A. L., Pinheiro, L. & Falcao, A. O. (2012). A Bayesian approach to in silico blood-brain barrier penetration modeling. Journal of Chemical Information and Modeling 52, 16861697.
Mattingly, C. J., Rosenstein, M. C., Colby, G. T., Forrest, J. N. Jr. & Boyer, J. L. (2006). The Comparative Toxicogenomics Database (CTD): a resource for comparative toxicological studies. Journal of Experimental Zoology Part a-Comparative Experimental Biology 305A, 689692.
Moaddel, R., Ravichandran, S., Bighi, F., Yamaguchi, R. & Wainer, I. W. (2007). Pharmacophore modelling of stereoselective binding to the human organic cation transporter (hOCT1). British Journal of Pharmacology 151, 13051314.
Moritomo, A., Yamada, H., Watanabe, T., Itahana, H., Akuzawa, S., Okada, M. & Ohta, M. (2013). Synthesis and structure–activity relationships of new carbonyl guanidine derivatives as novel dual 5-HT2B and 5-HT7 receptor antagonists. Bioorganic & Medicinal Chemistry 21, 78417852.
Moroy, G., Martiny, V. Y., Vayer, P., Villoutreix, B. O. & Miteva, M. A. (2012). Toward in silico structure-based ADMET prediction in drug discovery. Drug Discovery Today 17, 4455.
Mullard, A. (2014). 2013 FDA drug approvals. Nature Reviews Drug Discovery 13, 8589.
Muster, W. G., Breidenbach, A., Fischer, H., Kirchner, S., Muller, L. & Pahler, A. (2008). Computational toxicology in drug development. Drug Discovery Today 13, 303310.
Nestorov, I. (2007). Whole-body physiologically based pharmacokinetic models. Expert Opinion on Drug Metabolism & Toxicology 3, 235249.
Newby, D., Freitas, A. A. & Ghafourian, T. (2013). Pre-processing feature selection for improved C&RT models for oral absorption. Journal of Chemical Information and Modeling 53, 27302742.
Oh, W. S., Kim, D. N., Jung, J., Cho, K. H. & No, K. T. (2008). New combined model for the prediction of regioselectivity in cytochrome P450/3A4 mediated metabolism. Journal of Chemical Information and Modeling 48, 591601.
Österberg, F. & Aqvist, J. (2005). Exploring blocker binding to a homology model of the open hERG K+ channel using docking and molecular dynamics methods. Febs Letters 579, 29392944.
Ou-Yang, S. S., Lu, J. Y., Kong, X. Q., Liang, Z. J., Luo, C. & Jiang, H. L. (2012). Computational drug discovery. Acta Pharmacologica Sinica 33, 11311140.
Palmeira, A., Rodrigues, F., Sousa, E., Pinto, M., Vasconcelos, M. H. & Fernandes, M. X. (2011). New uses for old drugs: pharmacophore-based screening for the discovery of P-glycoprotein inhibitors. Chemical Biology & Drug Design 78, 5772.
Palmer, D. S., Frolov, A. I., Ratkova, E. L. & Fedorov, M. V. (2010). Towards a universal method for calculating hydration free energies: a 3D reference interaction site model with partial molar volume correction. Journal of Physics-Condensed Matter 22, 492101.
Palmer, D. S., Mcdonagh, J. L., Mitchell, J. B. O., Van Mourik, T. & Fedorov, M. V. (2012). First-principles calculation of the intrinsic aqueous solubility of crystalline druglike molecules. Journal of Chemical Theory and Computation 8, 33223337.
Pang, K. S. & Rowland, M. (1977). Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. Journal of Pharmacokinetics and Biopharmaceutics 5, 625653.
Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R. & Schacht, A. L. (2010). How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Reviews Drug Discovery 9, 203214.
Pei, J. F., Yin, N., Ma, X. M. & Lai, L. H. (2014). Systems biology brings new dimensions for structure-based drug design. Journal of the American Chemical Society 136, 1155611565.
Peng, J. L., Lu, J., Shen, Q. C., Zheng, M. Y., Luo, X. M., Zhu, W. L., Jiang, H. L. & Chen, K. X. (2014). In silico site of metabolism prediction for human UGT-catalyzed reactions. Bioinformatics 30, 398405.
Penzotti, J. E., Lamb, M. L., Evensen, E. & Grootenhuis, P. D. J. (2002). A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein. Journal of Medicinal Chemistry 45, 17371740.
Pick, A., Muller, H., Mayer, R., Haenisch, B., Pajeva, I. K., Weigt, M., Bonisch, H., Muller, C. E. & Wiese, M. (2011). Structure-activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorganic & Medicinal Chemistry 19, 20902102.
Ponder, J. W., Wu, C. J., Ren, P. Y., Pande, V. S., Chodera, J. D., Schnieders, M. J., Haque, I., Mobley, D. L., Lambrecht, D. S., Distasio, R. A., Head-Gordon, M., Clark, G. N. I., Johnson, M. E. & Head-Gordon, T. (2010). Current status of the AMOEBA polarizable force field. Journal of Physical Chemistry B 114, 25492564.
Price, D. A., Blagg, J., Jones, L., Greene, N. & Wager, T. (2009). Physicochemical drug properties associated with in vivo toxicological outcomes: a review. Expert Opinion on Drug Metabolism & Toxicology 5, 921931.
Prieto, P., Kinsner-Ovaskainen, A., Stanzel, S., Albella, B., Artursson, P., Campillo, N., Cecchelli, R., Cerrato, L., Diaz, L., Di Consiglio, E., Guerra, A., Gombau, L., Herrera, G., Honegger, P., Landry, C., O'Connor, J. E., Paez, J. A., Quintas, G., Svensson, R., Turco, L., Zurich, M. G., Zurbano, M. J. & Kopp-Schneider, A. (2013). The value of selected in vitro and in silico methods to predict acute oral toxicity in a regulatory context: results from the European project ACuteTox. Toxicology in Vitro 27, 13571376.
Pujol, A., Mosca, R., Farres, J. & Aloy, P. (2010). Unveiling the role of network and systems biology in drug discovery. Trends in Pharmacological Sciences 31, 115123.
Qin, S. J. (2014). Process data analytics in the era of big data. Aiche Journal 60, 30923100.
Reenu, V. (2014). Electron-correlation based externally predictive QSARs for mutagenicity of nitrated-PAHs in Salmonella typhimurium TA100. Ecotoxicology and Environmental Safety 101, 4250.
Ridder, L. & Wagener, M. (2008). SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. ChemMedChem 3, 821832.
Rudik, A. V., Dmitriev, A. V., Lagunin, A. A., Filimonov, D. A. & Poroikov, V. V. (2014). Metabolism site prediction based on xenobiotic structural formulas and pass prediction algorithm. Journal of Chemical Information and Modeling 54, 498507.
Rupp, M., Korner, R. & Tetko, I. V. (2010). Estimation of acid dissociation constants using graph kernels. Molecular Informatics 29, 731741.
Rupp, M., Korner, R. & Tetko, I. V. (2011). Predicting the pK a of small molecules. Combinatorial Chemistry & High Throughput Screening 14, 307327.
Rydberg, P., Gloriam, D. E., Zaretzki, J., Breneman, C. & Olsen, L. (2010). SMARTCyp: a 2D method for prediction of Cytochrome P450-mediated drug metabolism. Acs Medicinal Chemistry Letters 1, 96100.
Sanderson, D. M. & Earnshaw, C. G. (1991). Computer prediction of possible toxic action from chemical structure; the DEREK system. Human & Experimental Toxicology 10, 261273.
Schadt, E. E., Linderman, M. D., Sorenson, J., Lee, L. & Nolan, G. P. (2010). Computational solutions to large-scale data management and analysis. Nature Reviews Genetics 11, 647657.
Schnieders, M. J., Baltrusaitis, J., Shi, Y., Chattree, G., Zheng, L. Q., Yang, W. & Ren, P. Y. (2012). The structure, thermodynamics, and solubility of organic crystals from simulation with a polarizable force field. Journal of Chemical Theory and Computation 8, 17211736.
Seierstad, M. & Agrafiotis, D. K. (2006). A QSAR model of hERG binding using a large, diverse, and internally consistent training set. Chemical Biology & Drug Design 67, 284296.
Shen, J., Cheng, F., Xu, Y., Li, W. & Tang, Y. (2010). Estimation of ADME properties with substructure pattern recognition. Journal of Chemical Information and Modeling 50, 10341041.
Sheridan, R. P., Korzekwa, K. R., Torres, R. A. & Walker, M. J. (2007). Empirical regioselectivity models for human cytochromes P450 3A4, 2D6, and 2C9. Journal of Medicinal Chemistry 50, 31733184.
Sherman, W., Day, T., Jacobson, M. P., Friesner, R. A. & Farid, R. (2005). Novel procedure for modeling ligand/receptor induced fit effects. Journal of Medicinal Chemistry 49, 534553.
Singh, S. B., Shen, L. Q., Walker, M. J. & Sheridan, R. P. (2003). A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules. Journal of Medicinal Chemistry 46, 13301336.
Sliwoski, G., Kothiwale, S., Meiler, J. & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews 66, 334395.
Sorich, M. J., Mckinnon, R. A., Miners, J. O. & Smith, P. A. (2006). The importance of local chemical structure for chemical metabolism by human uridine 5’-diphosphate-Glucuronosyltransferase. Journal of Chemical Information and Modeling 46, 26922697.
Stegemann, S., Leveiller, F., Franchi, D., De Jong, H. & Linden, H. (2007). When poor solubility becomes an issue: from early stage to proof of concept. European Journal of Pharmaceutical Sciences 31, 249261.
Stella, V. J., Borchardt, R. T., Hageman, M. J., Oliyai, R., Maag, H. & Tilley, J. W. (2007). Prodrugs: Challenges and Rewards. New York: Springer.
Stenberg, P., Bergstrom, C. A. S., Luthman, K. & Artursson, P. (2002). Theoretical predictions of drug absorption in drug discovery and development. Clinical Pharmacokinetics 41, 877899.
Still, W. C., Tempczyk, A., Hawley, R. C. & Hendrickson, T. (1990). Semianalytical treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society 112, 61276129.
Sturla, S. J., Boobis, A. R., Fitzgerald, R. E., Hoeng, J., Kavlock, R. J., Schirmer, K., Whelan, M., Wilks, M. F. & Peitsch, M. C. (2014). Systems Toxicology: from basic research to risk assessment. Chemical Research in Toxicology 27, 314329.
Suhre, W. M., Ekins, S., Chang, C., Swaan, P. W. & Wright, S. H. (2005). Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Molecular Pharmacology 67, 10671077.
Sun, H. (2006). An accurate and interpretable Bayesian classification model for prediction of hERG liability. ChemMedChem 1, 315322.
Sushko, I., Salmina, E., Potemkin, V. A., Poda, G. & Tetko, I. V. (2012). ToxAlerts: a web server of structural alerts for toxfic chemicals and compounds with potential adverse reactions. Journal of Chemical Information and Modeling 52, 23102316.
Talafous, J., Sayre, L. M., Mieyal, J. J. & Klopman, G. (1994). META.2. A dictionary model of mammalian xenobiotic metabolism. Journal of Chemical Information and Computer Sciences 34, 13261333.
Tan, J. J., Cong, X. J., Hu, L. M., Wang, C. X., Jia, L. & Liang, X. J. (2010). Therapeutic strategies underpinning the development of novel techniques for the treatment of HIV infection. Drug Discovery Today 15, 186197.
Tarcsay, A. & Keseru, G. M. (2013). Contributions of molecular properties to drug promiscuity miniperspective. Journal of Medicinal Chemistry 56, 17891795.
Teague, S. J., Davis, A. M., Leeson, P. D. & Oprea, T. (1999). The design of leadlike combinatorial libraries. Angewandte Chemie-International Edition 38, 37433748.
Tehan, B. G., Lloyd, E. J., Wong, M. G., Pitt, W. R., Gancia, E. & Manallack, D. T. (2002a). Estimation of pk(a) using semiempirical molecular orbital methods. Part 2: application to amines, anilines and various nitrogen containing heterocyclic compounds. Quantitative Structure-Activity Relationships 21, 473485.
Tehan, B. G., Lloyd, E. J., Wong, M. G., Pitt, W. R., Montana, J. G., Manallack, D. T. & Gancia, E. (2002b). Estimation of pk(a) using semiempirical molecular orbital methods. Part 1: application to phenols and carboxylic acids. Quantitative Structure-Activity Relationships 21, 457472.
Tetko, I. V., Poda, G. I., Ostermann, C. & Mannhold, R. (2009). Accurate in silico log P predictions: one can't embrace the unembraceable. QSAR & Combinatorial Science 28, 845849.
Thomas, S., Brightman, F., Gill, H., Lee, S. & Pufong, B. (2008). Simulation modelling of human intestinal absorption using Caco-2 permeability and kinetic solubility data for early drug discovery. Journal of Pharmaceutical Sciences 97, 45574574.
Thompson, J. D., Cramer, C. J. & Truhlar, D. G. (2003). Predicting aqueous solubilities from aqueous free energies of solvation and experimental or calculated vapor pressures of pure substances. The Journal of Chemical Physics 119, 16611670.
Tomasi, J., Mennucci, B. & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews 105, 29993093.
Trainor, G. L. (2007). The importance of plasma protein binding in drug discovery. Expert Opinion on Drug Discovery 2, 5164.
Truhlar, D. G., Howe, W. J., Hopfinger, A. J., Blaney, J. & Dammkoehler, R. A. (1999). Rational Drug Design. New York: Springer.
Turner, R. (1965). Acute toxicity: the determination of LD50. In Screening Methods in Pharmacology (ed. Turner, R.), pp. 300. New York: Academic Press.
Tyzack, J. D., Mussa, H. Y., Williamson, M. J., Kirchmair, J. & Glen, R. C. (2014). Cytochrome P450 site of metabolism prediction from 2D topological fingerprints using GPU accelerated probabilistic classifiers. Journal of Cheminformatics 6, 29.
Uehara, T., Ono, A., Maruyama, T., Kato, I., Yamada, H., Ohno, Y. & Urushidani, T. (2010). The Japanese toxicogenomics project: application of toxicogenomics. Molecular Nutrition & Food Research 54, 218227.
Van De Waterbeemd, H. & Gifford, E. (2003). ADMET in silico modelling: towards prediction paradise? Nature Reviews Drug Discovery 2, 192204.
Vařeková, R. S., Geidl, S., Ionescu, C.-M., Skrehota, O., Bouchal, T., Sehnal, D., Abagyan, R. & Koca, J. (2013). Predicting pK a values from EEM atomic charges. Journal of Cheminformatics 5, 18.
Vicini, P. & van der Graaf, P. H. (2013). Systems pharmacology for drug discovery and development: paradigm shift or flash in the pan? Clinical Pharmacology & Therapeutics 93, 379381.
Voronkov, A., Holsworth, D. D., Waaler, J., Wilson, S. R., Ekblad, B., Perdreau-Dahl, H., Dinh, H., Drewes, G., Hopf, C., Morth, J. P. & Krauss, S. (2013). Structural basis and SAR for G007-LK, a lead stage 1,2,4-triazole based specific tankyrase 1/2 inhibitor. Journal of Medicinal Chemistry 56, 30123023.
Wan, H. & Ulander, J. (2006). High-throughput pK(a) screening and prediction amenable for ADME profiling. Expert Opinion on Drug Metabolism & Toxicology 2, 139155.
Wang, J. L. & Collis, A. (2011). Maximizing the outcome of early ADMET models: strategies to win the drug-hunting battles? Expert Opinion on Drug Metabolism & Toxicology 7, 381386.
Wang, J. M., Hou, T. J. & Xu, X. J. (2009). Aqueous solubility prediction based on weighted atom type counts and solvent surface areas. Journal of Chemical Information and Modeling 49, 571581.
Wang, J. M., Xie, X. Q., Hou, T. J. & Xu, X. J. (2007). Fast approaches for molecular polarizability calculations. Journal of Physical Chemistry A 111, 44434448.
Wang, S. C., Li, Y. Y., Wang, J. M., Chen, L., Zhang, L. L., Yu, H. D. & Hou, T. J. (2012). ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage. Molecular Pharmaceutics 9, 9961010.
Wang, S. C., Li, Y. Y., Xu, L., Li, D. & Hou, T. J. (2013). Recent developments in computational prediction of hERG blockage. Current Topics in Medicinal Chemistry 13, 13171326.
Waring, M. J. (2010). Lipophilicity in drug discovery. Expert Opinion Drug Discovery 5, 235248.
Waters, M. D. & Fostel, J. M. (2004). Toxicogenomics and systems toxicology: aims and prospects. Nature Reviews Genetics 5, 936948.
Wilkinson, G. R. & Shand, D. G. (1975). Commentary: a physiological approach to hepatic drug clearance. Clinical Pharmacology & Therapeutics 18, 377390.
Wittwer, M. B., Zur, A. A., Khuri, N., Kido, Y., Kosaka, A., Zhang, X., Morrissey, K. M., Sali, A., Huang, Y. & Giacomini, K. M. (2013). Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling. Journal of Medicinal Chemistry 56, 781795.
Xiang, M. L., Cao, Y., Fan, W. J., Chen, L. J. & Mo, Y. R. (2012). Computer-aided drug design: lead discovery and optimization. Combinatorial Chemistry & High Throughput Screening 15, 328337.
Xu, C. Y., Cheng, F. X., Chen, L., Du, Z., Li, W. H., Liu, G. X., Lee, P. W. & Tang, Y. (2012). In silico prediction of chemical ames mutagenicity. Journal of Chemical Information and Modeling 52, 28402847.
Xu, Y., Liu, X., Li, S., Zhou, N., Gong, L., Luo, C., Luo, X., Zheng, M., Jiang, H. & Chen, K. (2013). Combinatorial pharmacophore modeling of organic cation transporter 2 (OCT2) inhibitors: insights into multiple inhibitory mechanisms. Molecular Pharmaceutics 10, 46114619.
Yu, L. X. & Amidon, G. L. (1999). A compartmental absorption and transit model for estimating oral drug absorption. International Journal of Pharmaceutics 186, 119125.
Yusof, I. & Segall, M. D. (2013). Considering the impact drug-like properties have on the chance of success. Drug Discovery Today 18, 659666.
Zhao, P., Rowland, M. & Huang, S. (2012a). Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions. Clinical Pharmacology & Therapeutics 92, 1720.
Zhao, P., Vieira, M. D. T., Grillo, J. A., Song, P. F., Wu, T. C., Zheng, J. H., Arya, V., Berglund, E. G., Atkinson, A. J., Sugiyama, Y., Pang, K. S., Reynolds, K. S., Abernethy, D. R., Zhang, L., Lesko, L. J. & Huang, S. M. (2012b). Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. Journal of Clinical Pharmacology 52, 91s108s.
Zhao, P., Zhang, L., Grillo, J., Liu, Q., Bullock, J., Moon, Y., Song, P., Brar, S., Madabushi, R. & Wu, T. (2011). Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clinical Pharmacology & Therapeutics 89, 259267.
Zheng, L., Chen, M. & Yang, W. (2008). Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems. Proceedings of the National Academy of Sciences of the United States of America 105, 2022720232.
Zheng, M., Luo, X., Shen, Q., Wang, Y., Du, Y., Zhu, W. & Jiang, H. (2009). Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics 25, 12511258.
Zheng, M. Y., Liu, X., Xu, Y., Li, H. L., Luo, C. & Jiang, H. L. (2013). Computational methods for drug design and discovery: focus on China. Trends in Pharmacological Sciences 34, 549559.
Zhong, L., Ma, C. Y., Zhang, H., Yang, L. J., Wan, H. L., Xie, Q. Q., Li, L. L. & Yang, S. Y. (2011). A prediction model of substrates and non-substrates of breast cancer resistance protein (BCRP) developed by GA-CG-SVM method. Computers in Biology and Medicine 41, 10061013.
Zhu, H., Martin, T. M., Ye, L., Sedykh, A., Young, D. M. & Tropsha, A. (2009). Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure. Chemical Research in Toxicology 22, 19131921.
Zolk, O., Solbach, T. F., Konig, J. & Fromm, M. F. (2009). Structural determinants of inhibitor interaction with the human organic cation transporter OCT2 (SLC22A2). Naunyn-Schmiedeberg's Archives of Pharmacology 379, 337348.
Zsila, F., Bikadi, Z., Malik, D., Hari, P., Pechan, I., Berces, A. & Hazai, E. (2011). Evaluation of drug-human serum albumin binding interactions with support vector machine aided online automated docking. Bioinformatics 27, 18061813.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed