Skip to main content Accessibility help
×
Home

Optical evanescent wave methods for the study of biomolecular interactions

Published online by Cambridge University Press:  17 March 2009


Peter B. Garland
Affiliation:
Chester Beatty Laboratories, The Institute of Cancer Research, Fulham Rd, London SW3 6JB

Extract

Implementation and regulation of the molecular mechanisms underlying biological processes is dependent on direct interactions between biological molecules. These interactions are characterised by specific binding between at least one molecule and another, and for binding to occur the molecules must be able to come close enough to each other to make contact. One of the partners in the interaction is invariably a macromolecule (e.g. protein or DNA) or an assembly of large size, such as a lipid bilayer. The interaction may take place with the partners in solution, or with at least one attached to a biological surface (e.g. a membrane) or a very large structure such as a chromosome. Where the partners are part of a membrane or other large structure then there must be a mechanism, such as lateral diffusion in the plane of the membrane, that permits them to come together close enough for interaction.


Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

Axelrod, D. (1981). Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141151.CrossRefGoogle ScholarPubMed
Axelrod, D., Burghardt, T. P. & Thompson, N. L. (1984). Total Internal Reflection Fluorescence. Ann. Rev. Biophys. Bioeng. 13, 247268.CrossRefGoogle ScholarPubMed
Betzig, E. & Chichester, R. J. (1993). Single molecules observed by near-field scanning optical microscopy. Science, 262, 14221424.CrossRefGoogle ScholarPubMed
Bevington, P. R. (1969). Least squares fit of non-linear parameters. In Data reduction and error analysis for the physical sciences, New York: McGraw-Hill.Google Scholar
Bondeson, K., Frostell-Karlsson, A., Fagerstam, L. & Magnusson, G. (1993). Lactose repressor-operator DNA interactions: kinetic analysis by a surface plasmon resonance biosensor. Anal. Biochem. 214, 245251.CrossRefGoogle ScholarPubMed
Buckle, P. E., Davies, R. J., Kinning, T., Yeung, D., Edwards, P. R. & Pollardknight, D. (1993). The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions. Part II: Applications. Biosensors & Bioelectronics 8, 355363.CrossRefGoogle Scholar
Burghardt, T. P. & Axelrod, D. (1981). Total internal reflection/photobleaching recovery study of serum albumin adsorption dynamics. Biophys. J. 33, 455468.CrossRefGoogle ScholarPubMed
Charles, S. A., Endericks, T., Evans, A. G., Garnham, S. E., Irlam, J. C., Pollardknight, D., Downes, M., Heaney, P. J., Finlan, M. F. & Garland, P. B. (1989). A biosensor based on surface plasmon resonance–principles, performance and applications. UCLA Sym. Mol.Cell. Biol.Google Scholar
Crc Handbook of Chemistry and Physics (1968). 49th. ed.. Cleveland, Ohio, USA: Chemical Rubber Company.Google Scholar
Cullen, D. C., Brown, R. G. W. & Lowe, C. R. (1987/1988). Detection of immunocomplex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosensors 3, 211225.CrossRefGoogle Scholar
Cullen, D. C. & Lowe, C. R. (1990). A direct surface plasmon-polariton immunosensor: preliminary investigation of the non-specific adsorption of serum components to the sensor surface. Sensors & Actuators B1, 576579.CrossRefGoogle Scholar
Cush, R., Cronin, J. M., Stewart, W. J., Maule, C. H., Molloy, J. & Goddard, N. J. (1993). The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part I: Principle of operation and associated instrumentation. Biosensors and Bioelectronics 8, 347353.CrossRefGoogle Scholar
Daniels, P. B., Deacon, J. K., Eddowes, M. J. & Pedley, D. G. (1988). Surface plasmon resonance applied to immunosensing. Sensors and Actuators 15, 1118.CrossRefGoogle Scholar
Davies, R. J., Edwards, P. R., Watts, H. J., Lowe, C. R., Buckle, P. E., Yeung, D., Kinning, T. M. & Pollard-Knight, D. V. (1994). The resonant mirror: a versatile tool for the study of biomolecular interactions. Techniques in protein chemistry, V (Academic Press), 285292.CrossRefGoogle Scholar
De Maria, L., Martinelli, M. & Vegetti, G. (1993). Fiber-optic sensor based on surface plasmon interrogation. Sensors & Actuators B. 12, 221223.CrossRefGoogle Scholar
Eagen, C. F., Weber, W. H., McMarthy, S. L. & Terhune, R. W. (1980). Timedependent decay of surface-plasmon coupled molecular fluorescence. Chem. Phys. Lett. 75, 274277.CrossRefGoogle Scholar
Eddowes, M. J. (1987/1988). Direct immunochemical sensing: basic chemical principles and fundamental limitations. Biosensors 3, 115.CrossRefGoogle ScholarPubMed
Eddowes, M. J. (1990). Theoretical methods for analysing biosensor performance. In Biosensors: A Practical Approach, (ed. Cass, A. E. G.) pp. 211263. Oxford: IRL Press.Google Scholar
Edwards, P. R., Gill, A., Pollard-Knight, D. V., Hoare, M., Buckle, P. E., Lowe, P. A. & Leatherbarrow, R. J. (1995). Kinetics of protein–protein interactions at the surface of an optical biosensor. Anal. Biochem. 231, 210217.CrossRefGoogle ScholarPubMed
Fisher, R. J. & Fivash, M. (1995). T cell receptor-MHC class I peptide interactions: affinity, kinetics, and specificity. Science 286, 115117.CrossRefGoogle Scholar
Flanagan, M. T. & Pantell, R. H. (1984). Surface plamon resonance and immunosensors. Electronics Letters 20, 968970.CrossRefGoogle Scholar
Glaser, R. W. (1993). Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer modelof binding and dissociation kinetics. Anal. Biochem. 213, 152161.CrossRefGoogle Scholar
Harootunian, A., Betzig, E., Isaacson, M. & Lewis, A. (1986). Super-resolution fluorescence near-field scanning optical microscopy. Appl. Phys. Lett. 49, 674676.CrossRefGoogle Scholar
Harrick, N. J. (1967). Internal reflection spectroscopy. Interscience, New York.Google Scholar
Harris, R. D., Luff, B. J., Wilkinson, J. S., Wilson, R. & Schiffrin, D. J. (1995). Waveguide surface plasmon resonance biosensor for the aqueous environment.Proc. 7th European Conference on Integrated Optics,Delft,April 3–6.449452.Google Scholar
Houseal, T. W., Bustamente, C.Stump, R. F. & Maestre, M. F. (1989). Real-time imaging of single DNA molecules with fluorescence microscopy. Biophys. J. 56, 507516.CrossRefGoogle ScholarPubMed
Hutchlnson, A. M. (1994). Characterization of glycoprotein oligosaccharides using surface plasmon resonance. Anal. Biochem. 220, 303307.CrossRefGoogle Scholar
Johnsson, B., Lofas, S. & Lindquist, G. (1991). Immobilisation of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal. Biochem. 198, 268277.CrossRefGoogle ScholarPubMed
Jonsson, U. & Malmqvist, M. (1992). Real time biospecific interaction analysis. Advances in Biosensors 2, 291336.Google Scholar
Jorgenson, R. C. & Yee, S. S. (1993). A fiber-optic chemical sensor based upon surface plasmon resonance. Sensors and Actuators B12, 213220.CrossRefGoogle Scholar
Kalb, E., Engel, J. & Tamm, L. K. (1990). Binding of proteins to specific target sites in membranes measured by total internal reflection fluorescence microscopy. Biochemistry 29, 16071613.CrossRefGoogle ScholarPubMed
Karlsson, R., Michaelsson, A. & Mattson, L. (1991). Kinetic analysis of monoclonal antibody-antigen with a new biosensor based analytical system. J. Immunochem. Methods 145, 229240.CrossRefGoogle ScholarPubMed
Kooyman, R. P. H., Bruijn, H. E., Eenink, R. G. & Greve, J. (1990). Surface plasmon resonance as a bioanalytical tool. J. Mol. Struct. 218, 345350.CrossRefGoogle Scholar
Kooyman, R. P. H., Kolkman, H., Van Gent, J. & Greve, J. (1988). Surface plasmon resonance immunosensors: sensitivity considerations. Analytica Chimica Acta 213,3545.CrossRefGoogle Scholar
Kovacs, G. (1982). Optical excitation of surface plasmon-polaritons in layered media. In Electromagnetic surface modes, (ed. Boardman, A. D.) pp.143200, John Wiley & Sons Ltd.Google Scholar
Kretschmann, E. & Raether, H. (1968). Radiative decay of nonradiative surface plasmoris exrefd by light. Z. Naturforsch. 23A, 21352136.Google Scholar
Lavers, C. R. & Wilkinson, J. R. (1994). A waveguide-coupled surface-plasmon sensor for an aqueous environment. Sensors & Actuators B22, 7581.CrossRefGoogle Scholar
Lee, E-H., Benner, R. E., Fenn, J. B. & Chang, R. K. (1979). Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation. Applied Optics 18, 862868.CrossRefGoogle Scholar
Liedberg, B., Nylander, Y. & Lundstrom, I. (1983). Surface plasmon resonance for gas detection and biosensing. Sensors & Actuators 4, 299304.CrossRefGoogle Scholar
Lofas, S. & Johnsson, B. (1990). A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilisation of ligands. J. Chem. Soc. Commun. 15261527.CrossRefGoogle Scholar
Lukosz, W. (1991). Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing. Biosensors and Bioelectronics 6, 215225.CrossRefGoogle Scholar
Lukosz, W., Clerc, D., Nellen, P. M., Stamm, C. & Weiss, P. (1991). Output grating couplers on planar optical waveguides as direct immunosensors. Biosensors & Bioelectronics 6, 237244.CrossRefGoogle ScholarPubMed
Malmqvist, M. (1993). Biospecific interaction analysis using biosensor technology. Nature 361, 186187.CrossRefGoogle ScholarPubMed
Matsubara, K., Kawata, S. & Minami, S. (1988). Optical chemical sensor based on surface plasmon measurement. Applied Optics 27, 11601163.CrossRefGoogle ScholarPubMed
Mayo, C. S. & Hallock, R. B. (1989a). Apparatus for the study of macromolecular adsorption. Rev. Sci. Instrum. 60, 739745.CrossRefGoogle Scholar
Mayo, C. S. & Hallock, R. B. (1989b). Immunoassay based on surface plasmon oscillations. J. Immunol. Methods 120, 105114.CrossRefGoogle ScholarPubMed
McMeekin, T. L., Groves, M. L. & Hipp, N. J. (1963). Refractive indices of amino acids, proteins, and related substances. Advances in chemistry series, 12, 5466.Google Scholar
Morikawa, K. & Yanagida, M. (1981). Visualisation of individual DNA molecules in solution by light microscopy: DAPI staining method. J. Biochem. 89, 693696.CrossRefGoogle Scholar
Morton, T. A., Myszka, D. G. & Chaiken, I. M. (1995). Interpretating complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration. Anal. Biochem. 227, 176185.CrossRefGoogle Scholar
Nie, S., Chiu, D. T. & Zare, R. N. (1994). Probing individual molecules with confocal fluorescence microscopy. Science 266, 10181021.CrossRefGoogle ScholarPubMed
Nilsson, P., Persson, B., Uhlen, M. & Nygren, P.-A. (1995). Real-time monitoring of DNA manipulations using biosensor technology. Anal. Biochem. 224, 400408.CrossRefGoogle ScholarPubMed
Nylander, C., Liedberg, B. & Lind, T. (1982). Gas detection by means of surface plasmon resonance. Sensors and Actuators 3, 7988.CrossRefGoogle Scholar
Ockman, N. (1978). The antibody-antigen interaction at an aqueous-solid interface: a study by means of polarized infrared ATR spectroscopy. Biopolymers 17, 12731284.CrossRefGoogle ScholarPubMed
O'Shannessy, D. J. (1994). Determination of kinetic rate and equilibrium binding constants for macromolecular interactions: a critique of the surface plasmon resonance literature. Anal. Biochem. 205, 125131.Google Scholar
O'Shannessy, D. J., Brigham-Burke, M., Soneson, K. K., Hensley, P. & Brooks, I. (1993). Determination of rate and equilibrium binding constants for macrolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods. Anal. Biochem. 212, 457468.CrossRefGoogle Scholar
Oshima, S., Kajiwara, T., Hiramoto, M., Hashimoto, K. & Sakata, T. (1986). Exrefd tetraphenylporphine on a silver surface: fluorescence quenching and interference effects. J. Phys. Chem. 90, 44744476.CrossRefGoogle Scholar
Otto, A. (1968). Excitation of nonradiative surface plasma waves in silver by the method of frustrated total interal reflection. Z. Phys. 216, 398410.CrossRefGoogle Scholar
Palik, E. D. & Holm, R. T. (1978). Internal-reflection-spectroscopy studies of thin films and surfaces. Optical Engin. 17, 512524.CrossRefGoogle Scholar
Perlmann, G. E. & Longsworh, L. E. (1948). The specific refractive increment of some purified proteins. J. Amer. Chem. Soc. 70, 27192724.CrossRefGoogle ScholarPubMed
Porter, M. D., Bright, T. B., Allara, D. L. & Chidsey, C. E. D. (1987). Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy and electrochemistry. J. Am. Chem. Soc. 109, 35593568.CrossRefGoogle Scholar
Raether, H. (1977). Surface plasma oscillations and their applications. In Physics of Thin Films, 9, (ed. Hass, G., Francombe, M., and Hoffman, R.), pp.145261. New York: Academic Press.Google Scholar
Rockhold, S. A., Quinn, R. D., Van Wegenen, R. A., Andrade, J. D. & Reichert, M. (1983). Total internal reflection fluorescence (TIRF) as a quantitative probe of protein adsorption. J. Electroanal. Chem. 150, 261275.CrossRefGoogle Scholar
Sadana, A. S. (1992). Binding kinetics of antigen by immobilised antibody: influence of reaction order and external diffusion limitations. Biosensors and Bioeletronics 7, 559568.CrossRefGoogle Scholar
Schuster, S. C., Swanson, R. V., Alex, L. A., Bourret, R. B. & Simon, M. I. (1993). Assembly and function of quarternary signal transduction complex monitored by surface plasmon resonance. Nature 365, 343347.CrossRefGoogle Scholar
Stenberg, S. & Nygren, H. (1988). Kinetics of antigen-antibody reactions at solidliquid surfaces. J. Immunol. Methods 113, 315.CrossRefGoogle Scholar
Stenberg, M., Stilbert, L. & Nygre, H. (1986). External diffusion in solid-phase immunoassays. J. Theor. Biol. 120, 129140.CrossRefGoogle ScholarPubMed
Stenberg, E., Persson, B., Roos, H. & Urbaniczky, C. (1991). Quantitative determination of surface protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interface Sci. 143, 513526.CrossRefGoogle Scholar
Stewart, W. J. (1984). Optical biosensor. UK Patent Application GB 8400297.Google Scholar
Stewart, W. J. (1986a). Optical assay. UK Patent Application GB 2173895 A.Google Scholar
Stewart, W. J. (1986b). Optic-waveguide biosensor. UK Patent Application, GB 2174802 A.Google Scholar
Thompson, N. L. (1982). Surface binding rates of nonfluorescent molecules may be obtained by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 38, 372–329.CrossRefGoogle ScholarPubMed
Thompson, N. L. & Axelrod, D. (1983). Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 43, 103114.CrossRefGoogle ScholarPubMed
Thompson, N. L., Burghardt, T. P. & Axelrod, D. (1981). Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys. J. 33, 435454.CrossRefGoogle ScholarPubMed
Trautman, J. K., Macklin, J. J., Brus, L. E. & Betzig, E. (1994). Near-field spectroscopy of single molecules at room temperature. Nature 369, 4042.CrossRefGoogle Scholar
Valentine, R. C. & Green, N. M. (1963). Electron microscopy of an antibody-hapten complex. J. Mol. Biol. 27, 615617.CrossRefGoogle Scholar
Watts, H. J., Lowe, C. R. & Pollard-Knight, D. V. (1994). Optical biosensor for monitoring microbial cells. Anal. Chem. 66, 24652470.CrossRefGoogle ScholarPubMed
Weber, W. H. & Eagan, C. F. (1979). Energy transfer from an exrefd dye molecule to the surface plasmons of an adjacent metal. Optics Lett. 4, 236238.CrossRefGoogle ScholarPubMed
Welford, K. (1991). Surface plasmon-polaritons and their uses. Optical & Quantum Electronics 23, 127.CrossRefGoogle Scholar
Williams, R. J. P. (1988). Self-assembling surfaces. Nature 332, 393.CrossRefGoogle ScholarPubMed
Yeung, D., Gill, A., Maule, C. H. & Davies, R. J. (1995). Detection and quantification of biomolecular interactions with optical biosensors. Trends in analytical chemistry 14, 4955.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 35 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-kbvxn Total loading time: 0.391 Render date: 2020-12-05T15:09:46.126Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 15:00:45 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optical evanescent wave methods for the study of biomolecular interactions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Optical evanescent wave methods for the study of biomolecular interactions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Optical evanescent wave methods for the study of biomolecular interactions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *