Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-94zm5 Total loading time: 14.503 Render date: 2021-04-21T12:22:07.679Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Oligonucleotide structure: a decade of results from single crystal X-ray diffraction studies

Published online by Cambridge University Press:  17 March 2009

Olga Kennard
Affiliation:
University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K.

Extract

Writing a review gives authors a splendid opportunity to view developments in a particular area of science from a very personal angle. They are at liberty to select material, emphasize aspects of direct interest to their own work and air speculations which, wisely or not, referees have caused to have removed from their publications. Such personal accounts often make good reading, but may be somewhat misleading especially for readers seeking an introduction to the field. One remedy is to aim at a comprehensive review with equal weight given to all publications but boredom, if not bias, is then likely to creep in.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below.

References

Aggarwal, A. K., Rodgers, D. W., Drottar, M., Ptashne, M. & Harrison, S. C. (1988). Recognition of a DNA operator by the cro repressor of phage 434: a view at high resolution. Science 242, 899907.CrossRefGoogle Scholar
Anderson, J. E., Ptashne, M. & Harrison, S. C. (1985). A phage repressor-operator complex at 7 Å resolution. Nature 316, 596601.CrossRefGoogle ScholarPubMed
Arentzen, R., Van Boecke, C. A. A., Van Der Marel, G. & Van Boom, J. H. (1979). A convenient phosphorylating agent for the synthesis of DNA fragments by the phosphotriester approach. Synthesis 137139.CrossRefGoogle Scholar
Arndt, U. W. (1985). Television area detector diffractometers. In Methods in Enzymology, vol. 114 (ed. Wyckoff, H., Hirs, C. H. W. and Timasheff, S. N.), pp. 472485. New York: Academic Press.Google Scholar
Arnott, S. & Hukins, D. W. J. (1972). Optimised parameters for A-DNA and B-DNA. Biochem. biophys. Res. Comm. 47, 15041509.CrossRefGoogle ScholarPubMed
Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). The protein data bank: a computer based archival file for macromolecular structures. Eur. J. Biochem. 80, 319324.CrossRefGoogle ScholarPubMed
Blundell, T. & Johnson, L. N. (1976). Protein Crystallography. New York: Academic Press.Google Scholar
Brennan, R. G., Westhof, E. & Sundaralingam, M. (1986). The structure of a ZDNA with 2 different backbone conformations. Stabilisation of the decadeoxyoligonucleotide d(CGTACGTACG) by [Co(NH3)6]3+ binding to the guanine. J. Biomolec. Struct. Dynam. 3, 649665.CrossRefGoogle Scholar
Brown, T., Kennard, O., Kneale, G. & Rabinovich, D. (1985). High resolution structure of a DNA helix containing mismatched base pairs. Nature 315, 604606.CrossRefGoogle ScholarPubMed
Brown, T., Hunter, W. N., Kneale, G. & Kennard, O. (1986 a). Molecular structure of the G. A base pair and it's implications for the mechanism of tranversion mutations. Proc. natn. Acad. Sci. U.S.A. 83, 24022406.CrossRefGoogle Scholar
Brown, T., Kneale, G., Hunter, W. N. & Kennard, O. (1986 b). Structural characterisation of the bromouracil.guanine base pair mismatch in a Z-DNA fragment. Nucl. Acids Res. 14, 18011809.CrossRefGoogle Scholar
Brown, T., Leonard, G. A., Booth, E. D. & Chambers, J. (1989). Crystal structure and stability of a DNA duplex containing A(anti). G(syn) base pairs. J. molec. Biol. 207, 445457.CrossRefGoogle Scholar
Calladine, C. R. (1982). Mechanics of sequence-dependent stacking of bases in BDNA. J. molec. Biol. 161, 343352.CrossRefGoogle Scholar
Calladine, C. R. & Drew, H. R. (1984). A base centred explanation of the B-to-A transition in DNA. J. molec. Biol. 178, 773782.CrossRefGoogle ScholarPubMed
Calladine, C. R. & Drew, H. R. (1986). Principles of sequence-dependent flexure of DNA. J. molec. Biol. 192, 907918.CrossRefGoogle ScholarPubMed
Calladine, C. R., Drew, H. R. & McCall, M. J. (1988). The intrinsic curvature of DNA in solution. J. molec. Biol. 201, 127137.CrossRefGoogle ScholarPubMed
Chattopadhaya, R. & Chakrabarti, P. (1988). Solving structures by MERLOT. Acta crystallogr. B 44, 651657.CrossRefGoogle Scholar
Chattopadhyaya, R., Ikuta, S., Grzeskowiak, K. & Dickerson, R. E. (1988). X-ray structure of a DNA hairpin molecule. Nature 334, 175179.CrossRefGoogle ScholarPubMed
Chevrier, B., Dock, A. C., Hartmann, B., Leng, M., Moras, D., Thoung, M. T. & Westhof, E. (1986). Solvation of the left-handed hexamer d(5BrCG5BrCG5BrCG) in crystals grown at two temperatures. J. molec. Biol. 188, 707719.CrossRefGoogle Scholar
Coll, M., Wang, A. H.-J., Van Der Marel, G. A., Van Boom, J. H. & Rich, A. (1986). Crystal structure of a Z-DNA fragment containing thymine/2-aminoadenine base pairs. J. Biomolec. Struct. Dynam. 4, 157172.CrossRefGoogle ScholarPubMed
Coll, M., Frederick, C. A., Wang, A. H.-J. & Rich, A. (1987). A bifurcated hydrogen bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG). Proc. natn. Acad. Sci. U.S.A. 84, 83858389.CrossRefGoogle Scholar
Coll, M., Pita, I., Lloveras, J., Subirana, J. A., Bardella, P., Huynh-Dinh, T. & Igolen, J. (1988). Structure of d(CACGTG), a Z-DNA hexamer containing AT base pairs. Nucl. Acids Res. 16, 86958705.CrossRefGoogle Scholar
Coll, M., Saal, D., Frederick, C. A., Aymami, J., Rich, A. & Wang, A. H.-J. (1989 a). Effects of 5-fluorouracil/guanine wobble base pairs in Z-DNA. Molecular and crystal structure of d(CGCGFG). Nucl. Acids Res. 17, 911923.CrossRefGoogle Scholar
Coll, M., Aymami, J., Van Der Marel, G. A., Van Boom, J. H., Rich, A. & Wang, A. H.-J. (1989 b). Molecular structure of the netropsin-d(CGCGATATCGCG) complex: DNA conformation in an alternating AT segment. Biochemistry 28, 310320.CrossRefGoogle Scholar
Conner, B. N., Takano, T., Tanaka, S., Itakura, K. & Dickerson, R. E. (1982). The molecular structure of d(IoCCGG) a fragment of right-handed double helical ADNA. Nature 295, 294299.CrossRefGoogle Scholar
Conner, B. N., Yoon, C., Dickerson, J. L. & Dickerson, R. E. (1984). Helix geometry and hydration in an A-DNA tetramer: IoCCGG. J. molec. Biol. 174, 663695.CrossRefGoogle Scholar
Corfield, P. W. R., Hunter, W. N., Brown, T., Robinson, P. & Kennard, O. (1987). Inosine. adenine base-pairs in a B-DNA duplex. Nucl. Acids Res. 15, 79357949.CrossRefGoogle Scholar
Crawford, J. L., Kolpak, E. J., Wang, A. H.-J., Quigley, G. J., Van Boom, J. H., Van Der Marel, G. & Rich, A. (1980). The tetramer d(CGCG) crystallises as a lefthanded double helix. Proc. natn. Acad. Set. U.S.A. 77, 40164020.CrossRefGoogle Scholar
Cruse, W. B. T., Salisbury, S. A., Brown, T., Eckstein, F., Cosstick, R. & Kennard, O. (1986). Chiral phosphorothioate analogues of B-DNA: The crystal structure of Rp-d(GpSCGpSCGpSC). J. molec. Biol. 192, 891905.CrossRefGoogle Scholar
Cruse, W. B. T., Aymami, J., Kennard, O., Brown, T., Jack, A. G. C. & Leonard, G. A. (1989). Refined crystal structure of an octanucleotide duplex with I.T mismatched base pairs. Nucl. Acids Res. 17, 5572.CrossRefGoogle ScholarPubMed
Dickerson, R. E. (1983). Base sequence and helix structure variations in B and A-DNA. J. molec. Biol. 166, 419441.CrossRefGoogle Scholar
Dickerson, R. E. & Drew, H. R. (1981). Structure of a B-DNA dodecamer: influence of base sequence on helix structure. J. molec. Biol. 149, 761786.CrossRefGoogle ScholarPubMed
Dickerson, R. E. et al. (1989). Definitions and nomenclature of nucleic acid structure parameters. EMBO. J. 8, 14.Google Scholar
Di Gabriele, A. D., Sanderson, M. R. & Steitz, T. A. (1989). Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. Proc. Natn. Acad. Sci. U.S.A. 86, 18161820.CrossRefGoogle Scholar
Dock-Bregeon, A. C., Chevrier, B., Podjarny, A., Moras, D., Debear, J. S., Gough, G. R., Gilham, P. T. & Johnson, J. E. (1988). High resolution structure of the RNA duplex [U(U-A)6A]2. Nature 335, 375378.CrossRefGoogle ScholarPubMed
Doucet, J., Benoit, J.-P., Cruse, W. B. T., Prange, T. & Kennard, O. (1989). Coexistence of A- and B-form DNA in a single crystal lattice. Nature 337, 190192.CrossRefGoogle Scholar
Drew, H. R. & Dickerson, R. E. (1981 a). Structure of a B-DNA dodecamer: geometry of hydration. J. molec. Biol. 151, 535556.CrossRefGoogle ScholarPubMed
Drew, H. R. & Dickerson, R. E. (1981 b). Conformation and dynamics in a Z-DNA tetramer. J. molec. Biol. 152, 723736.CrossRefGoogle Scholar
Drew, H. R. & Travers, A. A. (1984). DNA structural variations in the tyrT promoter. Cell 37, 491502.CrossRefGoogle ScholarPubMed
Drew, H. R., Dickerson, R. E. & Itakura, K. (1978). A salt-induced conformational change in crystals of the synthetic DNA tetramer d(CGCG). J. molec. Biol. 125,535543.CrossRefGoogle Scholar
Drew, H. R., Takano, T., Tanaka, S., Itakura, K. & Dickerson, R. E. (1980). High salt d(CGCG): A left-handed Z-DNA double helix. Nature 286, 567573.CrossRefGoogle Scholar
Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K. & Dickerson, R. E. (1981). Structure of a B-DNA dodecamer; conformation and dynamics. Proc. natn. Acad. Sci. U.S.A. 78, 21792183.CrossRefGoogle ScholarPubMed
Drew, H. R., Samson, S. & Dickerson, R. E. (1982). Structure of a B-DNA dodecamer at 16 K. Proc. natn. Acad. Set. U.S.A. 79, 40404044.CrossRefGoogle ScholarPubMed
Drew, H. R., McCall, M. J. & Calladine, C. R. (1988). Recent studies of DNA in the crystal. A. Rev. Cell. Biol. 4, 120.CrossRefGoogle ScholarPubMed
Eisenstein, M., Hope, H., Haran, T. E., Frolow, P., Sharked, Z. & Rabinovich, D. (1988). Low-temperature study of the A-DNA fragment d(GGGCGCCC). Acta crystallogr. B 44, 625628.CrossRefGoogle Scholar
Fairall, L., Martin, S. & Rhodes, D. (1989). The DNA binding site of the Xenopus transcription factor IIIA has a non-B-form structure. EMBO. J. 8, 18091817.Google Scholar
Fazakerley, G. V., Quignard, E., Woisard, A., Guschlbauer, W., Van Der Marel, G. A., Van Boom, J. H., Jones, M. & Radman, M. (1986). Structures of mismatched base pairs in DNA and their recognition by the E. coli mismatch repair system. EMBO.J. 5, 36973703.Google Scholar
Fersht, A. R., Knill-Jones, J. W. & Tsui, W. C. (1982). Kinetic basis of spontaneous frequencies, proofreading specificities and cost of proofreading by DNA polymerases of E. coli. J. molec. Biol. 156, 3751.CrossRefGoogle Scholar
Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. (1982). Reversible bending in a B-DNA dodecamer: CGCGAATTBrCGCG. J. biol. Chem. 257, 1468614707.Google Scholar
Frederick, C. A., Saal, D., Van Der Marel, G. A., Van Boom, J. H., Wang, A. H.-J. & Rich, A. (1987). The crystal structure of d(GGmCCGGCC): the effect of methylation on A-DNA structure and stability. Biopolymers 26, 145160.CrossRefGoogle Scholar
Frederick, C. A., Quigley, G. J., Van Der Marel, G. A., Van Boom, J. H., Wang, A. H.-J. & Rich, A. (1988). Methylation of the Ecorl recognition site does not alter DNA conformation: the crystal structure of d(CGCGAm6ATTCGCG) at 20 Å resolution. J. biol. Chem. 263, 1787217879.Google Scholar
Frederick, C. A., Quigley, G. J., Teng, M.-K., Coll, M., Van Der Marel, G. A., Van Boom, J. H., Rich, A. & Wang, A. H.-J. (1989). Molecular structure of an A-DNA decamer d(ACCGGCCGGT). Eur. J. Biochem. 181, 295307.CrossRefGoogle Scholar
Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R. & Steitz, T. A. (1988). Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. natn. Acad. Sci. U.S.A. 85, 89248928.CrossRefGoogle ScholarPubMed
Fujii, S., Wang, A. H.-J., Van Der Marel, G., Van Boom, J. H. & Rich, A. (1982). Molecular structure of (msdC-dG)3: the role of the methyl group on 5-methyl cytosine in stabilising Z-DNA. Nucl. Acids Res. 10, 78797892.CrossRefGoogle Scholar
Fujii, S., Wang, A. H.-J., Van Der Marel, G., Van Boom, J. H. & Rich, A. (1985). The octamers d(CGCGCGCG) and d(CGCATGCG) both crystallise as Z-DNA in the same hexagonal lattice. Biopolymers 24, 243250.CrossRefGoogle Scholar
Gait, M. J., Matthes, H. W. D., Singh, M., Sproat, B. S. & Titmus, R. C. (1982). Rapid synthesis of oligodeoxyribonucleotides VII. Solid phase synthesis by a continuous flow phosphotriester method on a kieselguhr-polyamide support. Nucl. Acids Res. 10, 62436248.CrossRefGoogle ScholarPubMed
Gao, X. & Patel, D. (1988). G(syn).A(anti) mismatch formation in DNA dodecamers at acidic pH:pH dependent conformational transition of G.A mispairs detected by proton NMR. J. Am. chem. Soc. 110, 51785182.CrossRefGoogle Scholar
Gottesfeld, J. M., Blanco, J. & Tennant, L. L. (1987). The 5S internal control region is B-form both free in solution and in a complex with TFIIIA. Nature 329, 460462.CrossRefGoogle Scholar
Hamlin, R. (1985). Multiwire area X-ray diffractometers. In Methods in Enzymology, vol. 114 (ed. Wyckoff, H., Hirs, C. H. W. and Timasheff, S. N.), pp. 416452. New York: Academic Press.Google Scholar
Haran, T. E., Shakked, Z., Wang, A. H.-J. & Rich, A. (1987). The crystal structure of d(CCCCGGGG): a new A-form variant with an extended backbone conformation. J. Biomolec. Struct. Dynam. 5, 199217.CrossRefGoogle ScholarPubMed
Heinemann, U., Lauble, H., Frank, R. & Blocker, H. (1987). Crystal structure analysis of an A-DNA fragment at 18 Å resolution: d(GCCCGGGC). Nucl. Acids Res. 15, 95319550.CrossRefGoogle Scholar
Hendrickson, W., Smith, J. L. & Sheriff, S. (1985). Direct phase determination based on anomalous scattering. In Methods in Enzymology, vol. 115 (ed. Wyckoff, H., Hirs, C. H. W. and Timasheff, S. N.), pp. 4155. New York: Academic Press.Google Scholar
Ho, P. S., Frederick, C. A., Quigley, G., Van Der Marel, G. A., Van Boom, J. H., Wang, A. H.-J. & Rich, A. (1985). G.T wobble pairing in Z-DNA at 10 Å atomic resolution; the crystal structure of d(CGCGTG). EMBO. J. 4, 36173623.Google Scholar
Holbrook, S. R. & Kim, S.-H. (1985). Crystallisation and heavy atom derivatives of polynucleotides. In Methods in Enzymology, vol. 114 (ed. Wyckoff, H., Hirs, C. H. W. and Timasheff, S. N.), pp. 167175. New York: Academic Press.Google Scholar
Hoogsteen, K. (1963). The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Crystallogr. 16,907916.CrossRefGoogle Scholar
Hoppe, H. (1988). Cryocrystallography of biological macromolecules: a generally applicable method. Acta Crystallogr. B 44, 2226.CrossRefGoogle Scholar
Hunter, W. N., Brown, T., Anand, N. N. & Kennard, O. (1986 a). Structure of an adenine-cytosine base pair in DNA and it's implications for mismatch repair. Nature 320, 552555.CrossRefGoogle Scholar
Hunter, W. N., Brown, T. & Kennard, O. (1986 b). Structural features and hydration of d(CGCGAATTAGCG): a double helix containing two G. A mispairs. J. Biomol. Struct. Dynam. 4, 173191.CrossRefGoogle Scholar
Hunter, W. N., Kneale, G., Brown, T., Rabinovich, D. & Kennard, O. (1986 b). Refined crystal structure of an octanucleotide duplex with G.T mismatched base pairs. J. molec. Biol. 190, 605618.CrossRefGoogle ScholarPubMed
Hunter, W. N., Brown, T. & Kennard, O. (1987 a). Structural features and hydration of d(CGCAAATTCGCG): a double helix containing two C. A mispairs. Nucl. Acids Res. 15, 65896606.CrossRefGoogle Scholar
Hunter, W. N., Brown, T., Kneale, G., Anand, N. N., Rabinovich, D. & Kennard, O. (1987 b). The structure of guanine.thymine mismatches in B-DNA at 2·5 Å revolution. J. biol. Chem. 262, 99629970.Google Scholar
Hunter, W. N., Langlois D'Estaintot, B. & Kennard, O. (1989). Structural variation in d(CTCTAGAG): implications for protein-nucleic acid interactions. Biochemistry 28, 24442451.CrossRefGoogle Scholar
Iupac-Iub Joint Commission on Biochemical Nomenclature (1983). Abbreviations and symbols for the description of conformations of polynucleotide chains. Eur. J. Biochem. 131, 915.CrossRefGoogle Scholar
Jain, S., Zon, G. & Sundaralingam, M. (1987). The potentially Z-DNA forming sequence d(GTGTACAC) crystallises as A-DNA. J. molec. Biol. 197, 141145.CrossRefGoogle Scholar
Jain, S., Zon, G. & Sundaralingam, M. (1989). Base only binding of spermine in the deep groove of the A-DNA octamer d(GTGTACAC). Biochemistry 28, 23602364.CrossRefGoogle Scholar
Jordan, S. R. & Pabo, C. O. (1988). Structure of the lambda complex at 2·5 Å resolution: details of the repressor-operator interactions. Science 242, 49174921.CrossRefGoogle ScholarPubMed
Joshua-Tor, L., Rabinovich, D., Hoppe, H.Frolow, F.Appella, E. & Sussman, J. L. (1988). The three-dimensional structure of a DNA duplex containing loopedout bases. Nature 334, 8284.CrossRefGoogle ScholarPubMed
Jovin, T. M., Soumpasis, D. M. & McIntosh, L. P. (1987). The transition between BDNA and Z-DNA. A. Rev. phys. Chem. 38, 521560.CrossRefGoogle Scholar
Kan, L.-S., Chandrasegaran, S., Pulford, S. M. & Miller, P. S. (1983). Detection of a guanine adenine base pair in a decadeoxyribonucleotide by proton magnetic resonance spectroscopy. Proc. natn. Acad. Set. U.S.A. 80, 42634265.CrossRefGoogle Scholar
Kennard, O. (1985). Structural studies of DNA fragments: The G.T wobble base pair in A, B and Z-DNA. The G.A base pair in B-DNA. J. Biomol. Struct. Dynam. 3, 205226.CrossRefGoogle Scholar
Kennard, O. (1987). The molecular structure of base-pair mismatches. In Nucleic acidsand Molecular Biology, vol. 1 (ed. Lilley, D., and Eckstein, E.), pp. 2552. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kennard, O. & Hunter, W. N. (1989). Crystal structures of oligonucleotides. In Landolt-Bornstein Tables, Group VII, vol. 1, pp. 255360. Berlin: Springer-Verlag.Google Scholar
Kennard, O., Cruse, W. B. T., Nachman, J., Prange, T., Shakked, Z. & Rabinovich, D. (1986). Ordered water structure in an A-DNA octamer at 1·7 Å resolution. J. Biomol. Struct. Dynam. 3, 623647.CrossRefGoogle Scholar
Klug, A., Jack, A., Viswamitra, M. A., Kennard, O., Shakked, Z. & Steitz, T. A. (1979). A hypothesis on a specific sequence dependent conformation of DNA and its relation to the binding of the lac-repressor protein. J. molec. Biol. 131, 669680.CrossRefGoogle ScholarPubMed
Kneale, G., Brown, T., Kennard, O. & Rabinovich, D. (1985). G.T. base pairs in a DNA helix: The crystal structure of d(GGGGTCCC). J. molec. Biol. 186, 805814.CrossRefGoogle Scholar
Kopka, M. L., Fratini, A. V., Drew, H. R. & Dickerson, R. E. (1983). Ordered water structure around a B-DNA dodecamer. J. molec. Biol. 163, 129146.CrossRefGoogle ScholarPubMed
Kopka, M. L., Yoon, C., Goodsell, D., Pjura, P. & Dickerson, R. E. (1985 a). The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc. natn. Acad. Sci. U.S.A. 82, 13761380.CrossRefGoogle ScholarPubMed
Kopka, M. L., Yoon, C., Goodsell, D., Pjura, P. & Dickerson, R. E. (1985 b). Binding of an anti-tumor drug to DNA: Netropsin and CGCGAATTBrCGCG. J. molec. Biol. 183, 553563.CrossRefGoogle Scholar
Lauble, H., Frank, R., Blocker, H. & Heinemann, U. (1988). Three-dimensional structure of d(GGGATCCC) in the crystalline state. Nucl. Acids Res. 16, 77997816.CrossRefGoogle ScholarPubMed
Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. J. molec. Biol. 3, 1830.CrossRefGoogle ScholarPubMed
McBride, L. J. & Caruthers, M. H. (1983). An investigation of several deoxynucleoside phosphoramidites useful for synthesising deoxyoligonucleotides. Tetrahedron Letts. 24, 245248.CrossRefGoogle Scholar
McCall, M., Brown, T. & Kennard, O. (1985). The crystal structure of d(GGGGCCC) – A model for poly(dG).poly(dC). J. molec. Biol. 183, 385396.CrossRefGoogle Scholar
McCall, M., Brown, T., Hunter, W. N. & Kennard, O. (1986). The crystal structure of d(GGATGGGAG): an essential part of the binding site for transcription factor IIIA. Nature 322, 661664.CrossRefGoogle ScholarPubMed
McClarin, J. A., Frederick, C. A., Wang, B.-C., Greene, P., Boyer, H. W., Grable, J. & Rosenberg, J. M. (1986). Structure of the DNA-EcoRI endonuclease recognition complex at 3 Å resolution. Science 234, 15261541.CrossRefGoogle Scholar
McPherson, A. (1982). Preparation and Analysis of Protein Crystals. San Francisco: John Wiley and Sons.Google Scholar
McPherson, A., Brayer, G. D. & Morrison, R. D. (1986). Crystal structure of Rnase A complexed with d(pA)4. J. molec. Biol. 189, 305327.CrossRefGoogle ScholarPubMed
Miller, M., Harrison, R. W., Wlodawer, A., Appella, E. & Sussman, J. L. (1988). Crystal structure of 15-mer DNA duplex containing unpaired bases. Nature 334, 8586.CrossRefGoogle ScholarPubMed
Moore, M. H., Hunter, W. N., Langlois D'Estaintot, B. & Kennard, O. (1989). Drug-DNA interactions in the crystal structure of d(CGATCG) complexed with daunomycin. J. molec. Biol. 206, 693705.CrossRefGoogle Scholar
Neidle, S., Pearl, L. & Skelly, J. V. (1987). DNA structure and perturbation by drug binding. Biochem. J. 243, 113.CrossRefGoogle ScholarPubMed
Nelson, H. C. M., Finch, J. T., Luisi, B. E. & Klug, A. (1987). The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature 330, 221226.CrossRefGoogle ScholarPubMed
Otwinowski, Z., Schevitz, R. W., Zhang, R.-G., Lawson, C. L., Joachimiak, A., Marmorstein, R. O., Luisi, B. F. & Sigler, P. B. (1988). Crystal structure of trp repressor/operator complex at atomic resolution. Nature 355, 321329.CrossRefGoogle Scholar
Patel, D. J., Shapiro, L. & Hare, D. (1987). Conformation of DNA base pair mismatches in solution. In Nucleic Acids and Molecular Biology (ed. Eckstein, F. and Lilley, D. M. J.), pp. 7084. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Pjura, P. E., Grzeskowiak, K. & Dickerson, R. E. (1987). Binding of Hoechst 33258 to the minor groove of B-DNA. J. molec. Biol. 197, 257271.CrossRefGoogle ScholarPubMed
Prive, G. G., Heinemann, U., Chandrasegaran, S., Kan, L. S.Kopka, M. L. & Dickerson, R. E. (1987). Helix geometry, hydration and G. A mismatch in a B-DNA decamer. Science 238, 498504.CrossRefGoogle Scholar
Prive, G. G., Heinemann, U., Chandrasegaran, S., Kan, L. S., Kopka, M. L. & Dickerson, R. E. (1988). A mismatch decamer as a model for general-sequence BDNA. In Structure and Expression, vol. 2 (ed. Sarma, R. H. and Sarma, M. H.), pp. 2747. Schenectady: Adenine Press.Google Scholar
Quigley, G. J., Wang, A. H.-J., Ughetto, G., Van Der Marel, G., Van Boom, J. H. & Rich, A. (1980). Molecular structure of an anticancer drug-DNA complex: Daunomycin plus d(CGTACG). Proc. natn. Acad. Sci. U.S.A. 77, 72047208.CrossRefGoogle Scholar
Quigley, G. J., Ughetto, G., Van Der Marel, G., Van Boom, J. H., Wang, A. H.-J. & Rich, A. (1986). Non-Watson-Crick G.C and A.T base pairs in a DNA-antibiotic complex. Science 232, 12551258.CrossRefGoogle Scholar
Rabinovich, D., Haran, T. E., Eisenstein, M. & Shakked, Z. (1988). Structures of the mismatched duplex d(GGGTGCCC) and one of its Watson-Crick analogues d(GGGCGCCC) J. molec. Biol. 200, 151161.CrossRefGoogle Scholar
Rabinovich, D. & Shakked, Z. (1984). A new approach to structure determination of large molecules by multi-dimensional search methods. Ada Crystallogr A 40, 195200.CrossRefGoogle Scholar
Rosenberg, B., Van Camp, J., Trosko, J. E. & Mansour, V. H. (1969). Platinum compounds: a new class of potent antitumour agents. Nature 222, 385386.CrossRefGoogle ScholarPubMed
Rich, A., Nordheim, A. & Wang, A. H.-J. (1984). The chemistry and biology of lefthanded Z-DNA. A. Rev. Biochem. 53, 791846.CrossRefGoogle Scholar
Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. (1984). Structure of the nucleosome core particle at 7 Å resolution. Nature 311, 532537.CrossRefGoogle ScholarPubMed
Saenger, W. (1984). Principles of Nucleic Acid Structure. New York: Springer-Verlag.CrossRefGoogle Scholar
Saenger, W. (1987). Structure and dynamics of water surrounding biomolecules. A. Rev. Biophys. biophys. Chem. 16, 93114.CrossRefGoogle ScholarPubMed
Saenger, W., Hunter, W. N. & Kennard, O. (1986). DNA conformation is determined by economics in the hydration of phosphate groups. Nature 324, 385388.CrossRefGoogle ScholarPubMed
Satchwell, S. C., Drew, H. R. & Travers, A. A. (1986). Sequence periodicities in chicken nucleosome core DNA. J. molec. Biol. 191, 659675.CrossRefGoogle ScholarPubMed
Seeman, N. C., Rosenberg, J. M. & Rich, A. (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc. natn. Acad. Sci. U.S.A. 73, 804808.CrossRefGoogle ScholarPubMed
Shakked, Z. & Kennard, O. (1984). The A form of DNA. In Biological Macromolecules and Assemblies, vol. 2. Nucleic Acids and Interactive Proteins (ed. McPherson, A. and Jurnak, F.), pp. 236. New York: Wiley and Sons.Google Scholar
Shakked, Z. & Rabinovich, D. (1986). The effect of the base sequence on the fine structure of the DNA double helix. Prog. Biophys. molec. Biol. 47, 159195.CrossRefGoogle ScholarPubMed
Shakked, Z., Rabinovich, D., Cruse, W. B. T., Egert, E., Kennard, O., Sala, G., Salisbury, S. A. & Viswamitra, M. A. (1981). Crystalline A-DNA: the X-ray analysis of the fragment d(GGTATACC). Proc. R. Soc. Land. B. 213, 479487.CrossRefGoogle Scholar
Shakked, Z., Rabinovich, D., Kennard, O., Cruse, W. B. T., Salisbury, S. A. & Viswamitra, M. A. (1983). Sequence dependent conformation of an A-DNA double helix: the crystal structure of the octamer d(GGTATACC). J. molec. Biol. 166, 183201.CrossRefGoogle Scholar
Sherman, S. E., Gibson, D., Wang, A. H.-J. & Lippard, S. J. (1985). X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: cis-[Pt(NH3)2-(pGpG)]. Science 230, 412417.CrossRefGoogle Scholar
Sherman, S. E., Gibson, D., Wang, A. H.-J. & Lippard, S. J. (1988). Crystal and molecular structure of cis-[Pt(NH3)2(pGpG)], the principal adduct formed by cisdiamminedichloroplatinum(II) with DNA. J. Am. Chem. Soc. 110, 73687381.CrossRefGoogle Scholar
Suck, D., Lahm, A. & Oefner, C. (1988). Structure refined to 20 Å of a nicked DNA octanucleotide complex with DNAse I. Nature 332, 464468.CrossRefGoogle Scholar
Teng, M.-K., Usman, N., Frederick, C.A. & Wang, A. H.-J. (1988). The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d(CGCGAATTCGCG). Nucl. Acids Res. 16, 26712690.CrossRefGoogle Scholar
Ughetto, G., Wang, A. H.-J., Quigley, G. J., Van Der Marel, G. A., Van Boom, J. H. & Rich, A. (1985). A comparison of the structure of echinomycin and triostin A complexed to a DNA fragment. Nucl. Acids Res. 13, 23052323.CrossRefGoogle ScholarPubMed
Viswamitra, M. A., Kennard, O., Jones, P. G., Sheldrick, G. M., Salisbury, S. A., Favello, L. & Shakked, Z. (1978). Structure of the deoxytetranucleotide d(pATAT) and a sequence dependant model for poly(dA-dT). Nature 273, 687688.CrossRefGoogle Scholar
Viswamitra, M. A., Shakked, Z., Jones, P. G., Sheldrick, G. M., Salisbury, S. A. & Kennard, O. (1982). Structure of the deoxytetranucleotide d-pATAT and a sequence-dependant model for poly(dA-dT). Biopolymers 21, 513533.CrossRefGoogle Scholar
Wang, A. H.-J., Quigley, G. J., Kolpak, R. J., Crawford, J. L., Van Boom, J. H., Van Der Marel, G. A. & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680686.CrossRefGoogle ScholarPubMed
Wang, A. H.-J., Quigley, G. J., Kolpak, R. J., Van Der Marel, G. A., Boom, J. H. & Rich, A. (1981). Left handed double helical DNA: variations in the backbone conformation. Science 211, 171176.CrossRefGoogle ScholarPubMed
Wang, A. H.-J., Fujii, S., Van Boom, J. H. & Rich, A. (1982 a). Molecular structure of the octamer d(GGCCGGCC): Modified A-DNA. Proc. natn. Acad. Sci. U.S.A. 79,39683972.CrossRefGoogle Scholar
Wang, A. H.-J., Fujii, S., Van Boom, J. H., Van Der Marel, G. A., Van Boeckel, S. A. A. & Rich, A. (1982 b). Molecular structure of r(GCG)d(TATACGC): A DNARNA hybrid helix joined to double helical DNA. Nature 299, 601604.CrossRefGoogle Scholar
Wang, A. H.-J., Hakoshima, T., Van Der Marel, G. A., Van Boom, J. H. & Rich, A. (1984 a). A.T base pairs are less stable than G.C base pairs in Z-DNA: the crystal structure of d(m5CGTAm5CG). Cell 37, 321331.CrossRefGoogle Scholar
Wang, A. H.-J., Ughetto, G., Quigley, G. J., Hakoshima, T., Van Der Marel, G. A., Van Boom, J. H. & Rich, A. (1984 b). The molecular structure of a DNA-triostin A complex. Science 225, 11151121.CrossRefGoogle ScholarPubMed
Wang, A. H.-J., Gessner, R. V., Van Der Marel, G. A., Van Boom, J. H. & Rich, A. (1985). Crystal structure of a Z-DNA without an alternating purine-pyrimidine sequence. Proc. natn. Acad. Sci. U.S.A. 82, 36113615.CrossRefGoogle ScholarPubMed
Wang, A. H.-J., Ughetto, G., Quigley, G. J. & Rich, A. (1986). Interactions of a quinoxaline antibiotic and DNA: The molecular structure of a triostin Ad(GCGTACGC) complex. J. Biomol. Struct. Dynam. 4, 319342.CrossRefGoogle Scholar
Wang, A. H.-J., Ughetto, G., Quigley, G. J. & Rich, A. (1987). The interaction between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CGTACG) at 1·2Å resolution. Biochemistry 26, 11521163.CrossRefGoogle Scholar
Watson, J. D. & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature 171, 737738.CrossRefGoogle ScholarPubMed
Westhof, E. (1987). Water: an integral part of nucleic acid structure. A. Rev. Biophys. biophys. Chem. 17, 125144.CrossRefGoogle Scholar
Westhof, E. (1988). Hydration of oligonucleotides in crystals. Int. J. Biol. Macromol. 9, 185192.Google Scholar
Westhof, E., Dumas, P. & Moras, D. (1985). Crystallographic refinement of yeast aspartic transfer RNA. J. molec. Biol. 184, 119145.CrossRefGoogle ScholarPubMed
Westhof, E., Hosur, M. V. & Sundaralingam, M. (1988). Nonintercalative binding of proflavin to Z-DNA: structure of a complex between d(5BrCG5BrCG) and proflavin. Biochemistry 27, 57425747.CrossRefGoogle Scholar
Wing, R., Drew, H., Takano, T., Broka, C., Tanaka, S., Itakura, K. & Dickerson, R. E. (1980). Crystal structure analysis of a complete turn of B-DNA. Nature 287 755758.CrossRefGoogle ScholarPubMed
Wing, R. M., Pjura, P., Drew, H. R. & Dickerson, R. E. (1984). The primary mode of binding of cisplatin to a B-DNA dodecamer: CGCGAATTCGCG. EMBO J. 3, 12011206.Google Scholar
Wolberger, C., Dong, Y., Ptashne, M. & Harrison, S. C. (1988). Structure of a phage 434 cro/DNA complex. Nature 335, 789795.CrossRefGoogle ScholarPubMed
Woodbury, C. P. & Von Hippel, P. H. (1981). Relaxed sequence specificities of EcoRI endonuclease and methylase: mechanisms, possible practical applications and uses in defining protein-nucleic acid recognition mechanisms. Gene Amplification and Analysis 1, 181207.Google ScholarPubMed
Yoon, C., Prive, G. G., Goodsell, D. S. & Dickerson, R. E. (1988). Structure of an alternating B-DNA helix and its relationship to A-tract DNA. Proc. natn. Acad. Sci. U.S.A. 85, 63326336.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 26 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Oligonucleotide structure: a decade of results from single crystal X-ray diffraction studies
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Oligonucleotide structure: a decade of results from single crystal X-ray diffraction studies
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Oligonucleotide structure: a decade of results from single crystal X-ray diffraction studies