Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-6f8dk Total loading time: 0.486 Render date: 2021-03-02T08:32:29.749Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Mass spectrometry: a technique of many faces

Published online by Cambridge University Press:  28 November 2016

Maya A. Olshina
Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
Michal Sharon
Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel


Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry (MS) plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different MS workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems.

Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below.


Aebersold, R. & Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198207.CrossRefGoogle ScholarPubMed
Aiken, C. T., Kaake, R. M., Wang, X. & Huang, L. (2011). Oxidative stress-mediated regulation of proteasome complexes. Molecular & Cellular Proteomics 10, R110·006924.CrossRefGoogle ScholarPubMed
Asher, G. (2005). A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes & Development 19, 316321.CrossRefGoogle ScholarPubMed
Asher, G., Dym, O., Tsvetkov, P., Adler, J. & Shaul, Y. (2006). The crystal structure of NAD(P)H Quinone Oxidoreductase 1 in complex with its potent inhibitor dicoumarol. Biochemistry 45, 63726378.CrossRefGoogle ScholarPubMed
Bar-Nun, S. & Glickman, M. H. (2011). Proteasomal AAA-ATPases: structure and function. Biochimica et Biophysica Acta 1823, 6782.CrossRefGoogle ScholarPubMed
Baugh, J. M., Viktorova, E. G. & Pilipenko, E. V. (2009). Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. Journal of Molecular Biology 386, 814827.CrossRefGoogle ScholarPubMed
Benesch, J. L. P. (2009). Collisional activation of protein complexes: picking up the pieces. Journal of the American Society for Mass Spectrometry 20, 341348.CrossRefGoogle ScholarPubMed
Ben-Nissan, G., Chotiner, A., Tarnavsky, M. & Sharon, M. (2016). Structural characterization of missense mutations using high resolution mass spectrometry: a case study of the Parkinson's-related protein, DJ-1. Journal of the American Society for Mass Spectrometry 27, 10621070.CrossRefGoogle ScholarPubMed
Ben-Nissan, G. & Sharon, M. (2014). Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules 4, 862884.CrossRefGoogle ScholarPubMed
Benesch, J. L. P., Ruotolo, B. T., Simmons, D. A. & Robinson, C. V. (2007). Protein complexes in the gas phase: technology for structural genomics and proteomics. Chemical Reviews 107, 35443567.CrossRefGoogle ScholarPubMed
Bennett, E. J., Rush, J., Gygi, S. P. & Harper, J. W. (2010). Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143, 951965.CrossRefGoogle ScholarPubMed
Bohn, S., Beck, F., Sakata, E., Walzthoeni, T., Beck, M., Aebersold, R., Förster, F., Baumeister, W. & Nickell, S. (2010). Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proceedings of the National Academy of Sciences 107, 2099220997.CrossRefGoogle ScholarPubMed
Boname, J. M., Thomas, M., Stagg, H. R., Xu, P., Peng, J. & Lehner, P. J. (2010). Efficient internalization of MHC I requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains. Traffic 11, 210220.CrossRefGoogle ScholarPubMed
Brodbelt, J. S. (2014). Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chemical Society Reviews 43, 27572783.CrossRefGoogle ScholarPubMed
Calabrese, A. N. & Pukala, T. L. (2013). Chemical cross-linking and mass spectrometry for the structural analysis of protein assemblies. Australian Journal of Chemistry 66, 749759.CrossRefGoogle Scholar
Chait, B. T., Cadene, M., Olinares, P. D., Rout, M. P. & Shi, Y. (2016). Revealing higher order protein structure using mass spectrometry. Journal of the American Society for Mass Spectrometry 27, 952965.CrossRefGoogle ScholarPubMed
Chorev, D. S., Ben-Nissan, G. & Sharon, M. (2015). Exposing the subunit diversity and modularity of protein complexes by structural mass spectrometry approaches. Proteomics 15, 27772791.CrossRefGoogle ScholarPubMed
Chu-Ping, M., Slaughter, C. A. & Demartino, G. N. (1992). Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochimica et Biophysica Acta 1119, 303311.CrossRefGoogle Scholar
Cooks, R. G., Terwilliger, D. T., Ast, T., Beynon, J. H. & Keough, T. (1975). Surface modified mass spectrometry. Journal of the American Chemical Society 97, 15831585.CrossRefGoogle Scholar
Dayon, L., Hainard, A., Licker, V., Turck, N., Kuhn, K., Hochstrasser, D. F., Burkhard, P. R. & Sanchez, J.-C. (2008). Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-Plex isobaric tags. Analytical Chemistry 80, 29212931.CrossRefGoogle ScholarPubMed
Dick, T. P., Nussbaum, A. K., Deeg, M., Heinemeyer, W., Groll, M., Schirle, M., Keilholz, W., Stevanović, S., Wolf, D. H., Huber, R., Rammensee, H.-G. & Schild, H. (1998). Contribution of proteasomal β-subunits to the cleavage of peptide substrates analyzed with yeast mutants. Journal of Biological Chemistry 273, 2563725646.CrossRefGoogle ScholarPubMed
Domon, B. & Aebersold, R. (2006). Mass spectrometry and protein analysis. Science 312, 212217.CrossRefGoogle ScholarPubMed
Fabre, B., Lambour, T., Bouyssié, D., Menneteau, T., Monsarrat, B., Burlet-Schiltz, O. & Bousquet-Dubouch, M.-P. (2014a). Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry. EuPA Open Proteomics 4, 8286.CrossRefGoogle Scholar
Fabre, B., Lambour, T., Delobel, J., Amalric, F., Monsarrat, B., Burlet-Schiltz, O. & Bousquet-Dubouch, M.-P. (2013). Subcellular distribution and dynamics of active proteasome complexes unraveled by a workflow combining in vivo complex cross-linking and quantitative proteomics. Molecular & Cellular Proteomics 12, 687699.CrossRefGoogle ScholarPubMed
Fabre, B., Lambour, T., Garrigues, L., Amalric, F., Vigneron, N., Menneteau, T., Stella, A., Monsarrat, B., Van Den Eynde, B., Burlet-Schiltz, O. & Bousquet-Dubouch, M. P. (2015). Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Molecular Systems Biology 11, 771771.CrossRefGoogle ScholarPubMed
Fabre, B., Lambour, T., Garrigues, L., Ducoux-Petit, M., Amalric, F., Monsarrat, B., Burlet-Schiltz, O. & Bousquet-Dubouch, M.-P. (2014b). Label-free quantitative proteomics reveals the dynamics of proteasome complexes composition and stoichiometry in a wide range of human cell lines. Journal of Proteome Research 13, 30273037.CrossRefGoogle Scholar
Fang, S. & Weissman, A. M. (2004). A field guide to ubiquitylation. Cellular and Molecular Life Sciences 61, 15461561.Google ScholarPubMed
Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 6471.CrossRefGoogle ScholarPubMed
Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annual Review of Biochemistry 78, 477513.CrossRefGoogle ScholarPubMed
Finley, D., Chen, X. & Walters, K. J. (2016). Gates, channels, and switches: elements of the proteasome machine. Trends in Biochemical Sciences 41, 7793.CrossRefGoogle ScholarPubMed
Finley, D., Ulrich, H. D., Sommer, T. & Kaiser, P. (2012). The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192, 319360.CrossRefGoogle ScholarPubMed
Funakoshi, M., Tomko, R. J. Jr., Kobayashi, H. & Hochstrasser, M. (2009). Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137, 887899.CrossRefGoogle ScholarPubMed
Gaskell, S. J. (1997). Electrospray: principles and practice. Journal of Mass Spectrometry 32, 677688.3.0.CO;2-G>CrossRefGoogle Scholar
Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. & Gygi, S. P. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proceedings of the National Academy of Sciences 100, 69406945.CrossRefGoogle ScholarPubMed
Gillet, L. C., Leitner, A. & Aebersold, R. (2016). Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annual Review of Analytical Chemistry 9, 449472.CrossRefGoogle ScholarPubMed
Glickman, M. H. & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews 82, 373428.CrossRefGoogle ScholarPubMed
Goldberg, A. L. (2003). Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895899.CrossRefGoogle ScholarPubMed
Grice, G. L., Lobb, I. T., Weekes, M. P., Gygi, S. P., Antrobus, R. & Nathan, J. A. (2015). The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains. Cell Reports 12, 545553.CrossRefGoogle ScholarPubMed
Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H. D. & Huber, R. (1997). Structure of 20S proteasome from yeast at 2·4 Å resolution. Nature 386, 463471.CrossRefGoogle ScholarPubMed
Guillaume, B., Chapiro, J., Stroobant, V., Colau, D., Van Holle, B., Parvizi, G., Bousquet-Dubouch, M.-P., Théate, I., Parmentier, N. & Van Den Eynde, B. J. (2010). Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules. Proceedings of the National Academy of Sciences 107, 1859918604.CrossRefGoogle ScholarPubMed
Heck, A. J. R. (2008). Native mass spectrometry: a bridge between interactomics and structural biology. Nature Methods 5, 927933.CrossRefGoogle ScholarPubMed
Hendil, K. B., Kriegenburg, F., Tanaka, K., Murata, S., Lauridsen, A.-M. B., Johnsen, A. H. & Hartmann-Petersen, R. (2009). The 20S proteasome as an assembly platform for the 19S regulatory complex. Journal of Molecular Biology 394, 320328.CrossRefGoogle ScholarPubMed
Hwang, J., Winkler, L. & Kalejta, R. F. (2011). Ubiquitin-independent proteasomal degradation during oncogenic viral infections. Biochimica et Biophysica Acta 1816, 147157.Google ScholarPubMed
Isasa, M., Rose, C. M., Elsasser, S., Navarrete-Perea, J., Paulo, J. A., Finley, D. J. & Gygi, S. P. (2015). Multiplexed, proteome-wide protein expression profiling: yeast deubiquitylating enzyme knockout strains. Journal of Proteome Research 14, 53065317.CrossRefGoogle ScholarPubMed
Juraschek, R., Dülcks, T. & Karas, M. (1999). Nanoelectrospray—More than just a minimized-flow electrospray ionization source. Journal of the American Society for Mass Spectrometry 10, 300308.CrossRefGoogle ScholarPubMed
Kaneko, T., Hamazaki, J., Iemura, S.-I., Sasaki, K., Furuyama, K., Natsume, T., Tanaka, K. & Murata, S. (2009). Assembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137, 914925.CrossRefGoogle ScholarPubMed
Karas, M. & Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 60, 23012303.CrossRefGoogle ScholarPubMed
Kao, A., Chiu, C.-L., Vellucci, D., Yang, Y., Patel, V. R., Guan, S., Randall, A., Baldi, P., Rychnovsky, S. D. & Huang, L. (2011). Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Molecular & Cellular Proteomics 10, M110·002212.CrossRefGoogle ScholarPubMed
Kao, A., Randall, A., Yang, Y., Patel, V. R., Kandur, W., Guan, S., Rychnovsky, S. D., Baldi, P. & Huang, L. (2012). Mapping the structural topology of the yeast 19S proteasomal regulatory particle using chemical cross-linking and probabilistic modeling. Molecular & Cellular Proteomics 11, 15661577.CrossRefGoogle ScholarPubMed
Kim, W., Bennett, E. J., Huttlin, E. L., Guo, A., Li, J., Possemato, A., Sowa, M. E., Rad, R., Rush, J., Comb, M. J., Harper, J. W. & Gygi, S. P. (2011). Systematic and quantitative assessment of the ubiquitin-modified proteome. Molecular Cell 44, 325340.CrossRefGoogle ScholarPubMed
Kirkpatrick, D. S., Gerber, S. A. & Gygi, S. P. (2005). The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35, 265273.CrossRefGoogle ScholarPubMed
Kirkpatrick, D. S., Hathaway, N. A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R. W. & Gygi, S. P. (2006). Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature Cell Biology 8, 700710.CrossRefGoogle ScholarPubMed
Konijnenberg, A., Butterer, A. & Sobott, F. (2013). Native ion mobility-mass spectrometry and related methods in structural biology. Biochimica et Biophysica Acta 1834, 1239.CrossRefGoogle ScholarPubMed
Kostova, Z. & Wolf, D. H. (2003). For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin–proteasome connection. EMBO Journal 22, 23092317.CrossRefGoogle ScholarPubMed
Krüger, E. & Kloetzel, P.-M. (2012). Immunoproteasomes at the interface of innate and adaptive immune responses: two faces of one enzyme. Current Opinion in Immunology 24, 7783.CrossRefGoogle ScholarPubMed
Kunjappu, M. J. & Hochstrasser, M. (2014). Assembly of the 20S proteasome. Biochimica et Biophysica Acta 1843, 212.CrossRefGoogle ScholarPubMed
Lander, G. C., Estrin, E., Matyskiela, M. E., Bashore, C., Nogales, E. & Martin, A. (2012). Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186191.Google ScholarPubMed
Lasker, K., Förster, F., Bohn, S., Walzthoeni, T., Villa, E., Unverdorben, P., Beck, F., Aebersold, R., Sali, A. & Baumeister, W. (2012). Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proceedings of the National Academy of Sciences 109, 13801387.CrossRefGoogle ScholarPubMed
Leitner, A., Faini, M., Stengel, F. & Aebersold, R. (2016). Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends in Biochemical Sciences 41, 2032.CrossRefGoogle ScholarPubMed
Leitner, A., Joachimiak, L. A., Unverdorben, P., Walzthoeni, T., Frydman, J., Förster, F. & Aebersold, R. (2014). Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proceedings of the National Academy of Sciences 111, 94559460.CrossRefGoogle ScholarPubMed
Leitner, A., Walzthoeni, T., Walzthoeni, T., Kahraman, A., Herzog, F., Kahraman, A., Rinner, O., Herzog, F., Beck, M. & Aebersold, R. (2010). Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Molecular & Cellular Proteomics 9, 16341649.CrossRefGoogle ScholarPubMed
Loo, J. A. (1997). Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrometry Reviews 16, 123.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W. & Huber, R. (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3·4 Å resolution. Science 268, 533539.CrossRefGoogle Scholar
Luan, B., Huang, X., Wu, J., Mei, Z., Wang, Y., Xue, X., Yan, C., Wang, J., Finley, D. J., Shi, Y. & Wang, F. (2016). Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proceedings of the National Academy of Sciences 113, 26422647.CrossRefGoogle ScholarPubMed
Mehmood, S., Allison, T. M. & Robinson, C. V. (2015). Mass spectrometry of protein complexes: from origins to applications. Annual Review of Physical Chemistry 66, 453474.CrossRefGoogle ScholarPubMed
Moscovitz, O., Ben-Nissan, G., Fainer, I., Pollack, D., Mizrachi, L. & Sharon, M. (2015). The Parkinson's-associated protein DJ-1 regulates the 20S proteasome. Nature Communications 6, 6609 1–13.CrossRefGoogle ScholarPubMed
Moscovitz, O., Tsvetkov, P., Hazan, N., Michaelevski, I., Keisar, H., Ben-Nissan, G., Shaul, Y. & Sharon, M. (2012). A mutually inhibitory feedback loop between the 20S proteasome and its regulator, NQO1. Molecular Cell 47, 7686.CrossRefGoogle ScholarPubMed
Park, S., Roelofs, J., Kim, W., Robert, J., Schmidt, M., Gygi, S. P. & Finley, D. (2009). Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459, 866870.CrossRefGoogle ScholarPubMed
Peters, J.-M. (2002). The anaphase-promoting complex: proteolysis in mitosis and beyond. Molecular Cell 9, 931943.CrossRefGoogle ScholarPubMed
Pickart, C. M. & Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Current Opinion in Chemical Biology 8, 610616.CrossRefGoogle ScholarPubMed
Pickering, A. M. & Davies, K. J. A. (2012). Degradation of damaged proteins: the main function of the 20S proteasome. Progress in Molecular Biology and Translational Science 109, 227248.CrossRefGoogle ScholarPubMed
Rappsilber, J. (2011). The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. Journal of Structural Biology 173, 530540.CrossRefGoogle ScholarPubMed
Rappsilber, J., Siniossoglou, S., Hurt, E. C. & Mann, M. (2000). A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Analytical Chemistry 72, 267275.CrossRefGoogle ScholarPubMed
Reyes-Turcu, F. E., Ventii, K. H. & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual review of Biochemistry 78, 363397.CrossRefGoogle ScholarPubMed
Roelofs, J., Park, S., Haas, W., Tian, G., Mcallister, F. E., Huo, Y., Lee, B.-H., Zhang, F., Shi, Y., Gygi, S. P. & Finley, D. (2009). Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459, 861865.CrossRefGoogle ScholarPubMed
Rose, R. J., Damoc, E., Denisov, E., Makarov, A. & Heck, A. J. R. (2012). High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nature Methods 9, 10841086.CrossRefGoogle ScholarPubMed
Saeki, Y., Toh-E, A., Kudo, T., Kawamura, H. & Tanaka, K. (2009). Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137, 900913.CrossRefGoogle ScholarPubMed
Sakata, E., Stengel, F., Fukunaga, K., Zhou, M., Saeki, Y., Förster, F., Baumeister, W., Tanaka, K. & Robinson, C. V. (2011). The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle. Molecular Cell 42, 637649.CrossRefGoogle ScholarPubMed
Schmidt, M., Haas, W., Crosas, B., Santamaria, P. G., Gygi, S. P., Walz, T. & Finley, D. (2005). The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nature Structural & Molecular Biology 12, 294303.CrossRefGoogle ScholarPubMed
Schwartz, A. L. & Ciechanover, A. (2009). Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annual Review of Pharmacology and Toxicology 49, 7396.CrossRefGoogle ScholarPubMed
Seifert, U., Bialy, L. P., Ebstein, F., Bech-Otschir, D., Voigt, A., Schröter, F., Prozorovski, T., Lange, N., Steffen, J., Rieger, M., Kuckelkorn, U., Aktas, O., Kloetzel, P.-M. & Krüger, E. (2010). Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142, 613624.CrossRefGoogle ScholarPubMed
Sharon, M. (2013). Structural MS pulls its weight. Science 340, 10591060.CrossRefGoogle ScholarPubMed
Sharon, M. & Robinson, C. V. (2007). The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annual Review of Biochemistry 76, 167193.CrossRefGoogle ScholarPubMed
Sharon, M., Taverner, T., Ambroggio, X. I., Deshaies, R. J. & Robinson, C. V. (2006). Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biology 4, 13141323.CrossRefGoogle ScholarPubMed
Shibatani, T., Carlson, E. J., Larabee, F., Mccormack, A. L., Früh, K. & Skach, W. R. (2006). Global organization and function of mammalian cytosolic proteasome pools: implications for PA28 and 19S regulatory complexes. Molecular Biology of the Cell 17, 49624971.CrossRefGoogle ScholarPubMed
Silva, J. C., Gorenstein, M. V., Li, G.-Z., Vissers, J. P. C. & Geromanos, S. J. (2006). Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Molecular & Cellular Proteomics 5, 144156.CrossRefGoogle ScholarPubMed
Sinz, A., Sharon, M., Chorev, D. & Arlt, C. (2015). Chemical cross-linking and native mass spectrometry: a fruitful combination for structural biology. Protein Science 24, 11931209.CrossRefGoogle ScholarPubMed
Snijder, J. & Heck, A. J. R. (2014). Analytical approaches for size and mass analysis of large protein assemblies. Annual Review of Analytical Chemistry 7, 4364.CrossRefGoogle ScholarPubMed
Stefl, S., Nishi, H., Petukh, M., Panchenko, A. R. & Alexov, E. (2013). Molecular mechanisms of disease-causing missense mutations. Journal of Molecular Biology 425, 39193936.CrossRefGoogle ScholarPubMed
Sutherland, B. W., Toews, J. & Kast, J. (2008). Utility of formaldehyde cross-linking and mass spectrometry in the study of protein–protein interactions. Journal of Mass Spectrometry 43, 699715.CrossRefGoogle ScholarPubMed
Syka, J. E. P., Coon, J. J., Schroeder, M. J., Shabanowitz, J. & Hunt, D. F. (2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the National Academy of Sciences 101, 95289533.CrossRefGoogle ScholarPubMed
Tomko, R. J., Funakoshi, M., Schneider, K., Wang, J. & Hochstrasser, M. (2010). Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Molecular Cell 38, 393403.CrossRefGoogle Scholar
Tomko, R. J. & Hochstrasser, M. (2011). Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Molecular Cell 44, 907917.CrossRefGoogle ScholarPubMed
Tomko, R. J., Taylor, D. W., Chen, Z. A., Wang, H.-W., Rappsilber, J. & Hochstrasser, M. (2015). A single α helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell 163, 432444.CrossRefGoogle ScholarPubMed
Unno, M., Mizushima, T., Morimoto, Y., Tomisugi, Y., Tanaka, K., Yasuoka, N. & Tsukihara, T. (2002). The structure of the mammalian 20S proteasome at 2·75 Å resolution. Structure 10, 609618.CrossRefGoogle ScholarPubMed
Ustrell, V., Hoffman, L., Pratt, G. & Rechsteiner, M. (2002). PA200, a nuclear proteasome activator involved in DNA repair. EMBO Journal 21, 35163525.CrossRefGoogle ScholarPubMed
Vandermarliere, E., Mueller, M. & Martens, L. (2013). Getting intimate with trypsin, the leading protease in proteomics. Mass Spectrometry Reviews 32, 453465.Google ScholarPubMed
Verma, R., Aravind, L., Oania, R., Mcdonald, W. H., Yates, J. R., Koonin, E. V., Deshaies, R. J. (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611615.CrossRefGoogle ScholarPubMed
Verma, R., Oania, R., Graumann, J. & Deshaies, R. J. (2004). Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99110.CrossRefGoogle ScholarPubMed
Wilm, M. & Mann, M. (1996). Analytical properties of the nanoelectrospray ion source. Analytical Chemistry 68, 18.CrossRefGoogle ScholarPubMed
Xu, P., Duong, D. M., Seyfried, N. T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D. & Peng, J. (2009). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133145.CrossRefGoogle ScholarPubMed
Yu, C., Yang, Y., Wang, X., Guan, S., Fang, L., Liu, F., Walters, K. J., Kaiser, P. & Huang, L. (2016). Characterization of dynamic UbR-proteasome subcomplexes by in vivo cross-linking (X) assisted bimolecular tandem affinity purification (XBAP) and label-free quantitation. Molecular & Cellular Proteomics 15, 22792292.CrossRefGoogle ScholarPubMed
Yu, Z., Livnat-Levanon, N., Kleifeld, O., Mansour, W., Nakasone, M. A., Castañeda, C. A., Dixon, E. K., Fushman, D., Reis, N., Pick, E. & Glickman, M. H. (2015). Base-CP proteasome can serve as a platform for stepwise lid formation. Bioscience Reports 35, 114.CrossRefGoogle ScholarPubMed
Zenobi, R. & Knochenmuss, R. (1998). Ion formation in MALDI mass spectrometry. Mass Spectrometry Reviews 17, 337366.3.0.CO;2-S>CrossRefGoogle Scholar
Zhou, M. & Wysocki, V. H. (2014). Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase. Accounts of Chemical Research 47, 10101018.CrossRefGoogle ScholarPubMed
Zubarev, R. A. & Kelleher, N. L. (1998). Electron capture dissociation of multiply charged protein cations. A nonergodic process. Journal of the American Chemical Society 120, 32653266.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 91
Total number of PDF views: 220 *
View data table for this chart

* Views captured on Cambridge Core between 28th November 2016 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mass spectrometry: a technique of many faces
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mass spectrometry: a technique of many faces
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mass spectrometry: a technique of many faces
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *