Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T14:47:47.348Z Has data issue: false hasContentIssue false

X-Ray Microlensing of Bright Quasars

Published online by Cambridge University Press:  05 March 2013

Shin Mineshige*
Affiliation:
Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
Atsunori Yonehara
Affiliation:
Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
Rohta Takahashi
Affiliation:
Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We calculate the expected microlens light curves to see what aspects of flow structures can be extracted by microlensing.We specifically pick up a disk-corona model as a model for bright quasars.We then expect distinct behaviour in the soft and hard X-ray microlens variations. Since soft X-ray emission is produced by Compton up-scattering of soft (optical-UV) photons from the innermost part of the disk, while hard X-ray radiation is via bremsstrahlung within the corona of a large volume, the model calculations predict more rapid soft X-ray changes than hard X-ray ones. Further, bright spots (or blobs) on the disk will produce humps in the microlens light curves. Future microlens observations will constrain such emission processes, thereby probing accretion flow structure.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Abramowicz, M. A., Chen, X., Kato, S., Lasota, J.-P., & Regev, O. 1995, ApJ, 438, L37 CrossRefGoogle Scholar
Blandford, R. D., & Hogg, D. W. 1995, in IAU Symp. 173, Astrophysical Application of Gravitational Lensing, ed. C. S. Kochanek, & J. N. Hewitt (Dordrecht: Kluwer), p. 355 Google Scholar
Chang, K., & Refsdal, S. 1979, Nature, 282 561 CrossRefGoogle Scholar
Chang, K., & Refsdal, S. 1984, A&A, 132, 168 Google Scholar
Huchra, J., Gorenstein, M., Horine, E., Kent, S., Perley, R., Shapiro, I. I. & Smith, G. 1985, AJ, 90, 691 CrossRefGoogle Scholar
Ichimaru, S. 1977, ApJ, 214, 840 CrossRefGoogle Scholar
Kawaguchi, T., Shimura, T., & Mineshige, S. 2001, ApJ, 546, 966 CrossRefGoogle Scholar
Machida, M., Hayashi, M., & Matsumoto, R. 2000, ApJ, 532, L67 CrossRefGoogle Scholar
Manmoto, T., Mineshige, S., & Kusunose, M. 1997, ApJ, 489, 791 CrossRefGoogle Scholar
Narayan, R., & Yi, I. 1995, ApJ, 452, 710 CrossRefGoogle Scholar
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337 Google Scholar
Takahashi, R., Yonehara, A., & Mineshige, S. 2001, PASJ, 53, 387 CrossRefGoogle Scholar
Wambsganss, J., Paczyński, B., & Schneider, P. 1990, ApJ, 352, 407 CrossRefGoogle Scholar
Yonehara, A., et al. 1998, ApJ, 501, L41; Erratum, 511, L65CrossRefGoogle Scholar