Skip to main content Accessibility help
×
Home

Spectral Feature Extraction Based on the DCPCA Method

  • BU YUDE (a1), PAN JINGCHANG (a2), JIANG BIN (a2), CHEN FUQIANG (a3) and WEI PENG (a4)...

Abstract

In this paper, a new sparse principal component analysis (SPCA) method, called DCPCA (sparse PCA using a difference convex program), is introduced as a spectral feature extraction technique in astronomical data processing. Using this method, we successfully derive the feature lines from the spectra of cataclysmic variables. We then apply this algorithm to get the first 11 sparse principal components and use the support vector machine (SVM) to classify. The results show that the proposed method is comparable with traditional methods such as PCA+SVM.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Spectral Feature Extraction Based on the DCPCA Method
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Spectral Feature Extraction Based on the DCPCA Method
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Spectral Feature Extraction Based on the DCPCA Method
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Burges, C. J. C. 1998, Data Min. Knowl. Disc., 2, 121
Cadima, J., & Jolliffe, I. T. 1995, J. Appl. Stat., 22, 203
Connolly, A. J., Szalay, A. S., Bershady, M. A., Kinney, A. L., & Calzetti, D. 1995, AJ, 110, 1071
d’Aspremont, A., EI Ghaoui, L., Jordan, M. I., & Lanckriet, G. R. G. 2007, SIAM Rev., 49, 434
Deeming, T. J. 1964, MNRAS, 127, 493
Gao, D., Zhang, Y.-x., & Zhao, Y.-h. 2008, MNRAS, 386, 1417
Horst, R., & Thoai, N. V. 1999, J. Optim. Theory Appl., 103, 1
Ishida, E. E. O., & de Souza, R. S. 2012, arXiv:1201.6676
Li, Z., Liu, W., & Hu, J. 1999, AcASn, 40, 1
Liu, R., Liu, S., & Zhao, R. 2006, Spectrosc. Spect. Anal., 26, 583
Mackey, L. 2009, in Advances in Neural Information Processing Systems, ed. Koller, D., Schuurmans, D., Bengio, Y., & Bottou, L. (Vol. 21; Cambridge: MIT Press), 1017
Moghaddam, B., Weiss, Y., & Avidan, S. 2007, in Advances in Neural Information Processing Systems ed. Scholkopf, B., Platt, J., Hoffman, T. (Vol. 19; Cambridge: MIT Press), 915
Muller, K. R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. 2001, IEEE Trans. Neural Netw., 12, 181
Singh, H. P., Gulati, R. K., & Gupta, R. 1998, MNRAS, 295, 312
Sriperumbudur, B. K., Torres, D. A., & Lankriet, G. R. G. 2011, Mach. Learn., 85, 3
Szkody, P., et al. 2002, AJ, 123, 430
Szkody, P., et al. 2003, AJ, 583, 430
Szkody, P., et al. 2004, AJ, 128, 1882
Szkody, P., et al. 2005, AJ, 129, 2386
Szkody, P., et al. 2006, AJ, 131, 973
Szkody, P., et al. 2007, AJ, 134, 185
Weaver, W. B., & Torres-Dodgen, A. V. 1997, ApJ, 487, 847
Vapnik, V. 1995, The Nature of Statistical Learning theory (New York: Springer-Verlag)
Yip, C. W., et al. 2004b, AJ, 128, 2603
York, D. G., et al. 2000, AJ, 120, 1579
Zhao, R., Hu, Z., & Zhao, Y. 2005, Spectrosc. Spect. Anal., 25, 153
Zhao, R., Wang, F., Luo, A., & Zhan, Y. 2009, Spectrosc. Spect. Anal., 29, 2010
Zou, H., Hastie, T., & Tibshirani, R. 2006, J. Comput. Graph. Stat., 15, 265

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed