Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T06:57:57.296Z Has data issue: false hasContentIssue false

Solar Second Harmonic Plasma Emission and the Head-on Approximation

Published online by Cambridge University Press:  25 April 2016

A. J. Willes
Affiliation:
Department of Theoretical Physics and Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia. a.willes@physics.usyd.edu.au
P. A. Robinson
Affiliation:
Department of Theoretical Physics and Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia. a.willes@physics.usyd.edu.au
D. B. Melrose
Affiliation:
Department of Theoretical Physics and Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia. a.willes@physics.usyd.edu.au

Abstract

The coalescence of two Langmuir waves, L and L′, produces emission at twice the plasma frequency in type II and type III solar radio bursts. The analysis of the coalescence process is usually simplified by assuming the head-on approximation, where the wavevectors of the coalescing waves satisfy kL′ ≈ −kL, corresponding to the two Langmuir waves meeting head on. However, this is not always a valid approximation, particularly when the peak of the Langmuir spectrum lies at small wavenumbers, for narrow band spectra, and for spectra with broad angular ranges. Realistic Langmuir wave spectra are used to investigate the effects of relaxing the head-on approximation.

Type
Solar and Solar System
Copyright
Copyright © Astronomical Society of Australia 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cairns, I. H., 1986, PhD thesis, Univ. Sydney Google Scholar
Cairns, I. H. 1987a, J. Plasma Phys., 38, 169 Google Scholar
Cairns, I. H. 1987b, J. Plasma Phys., 38, 179 Google Scholar
Dulk, G. A., Steinberg, J. L., Hoang, S., & Goldman, M. V., 1987, A&A, 173, 366 Google Scholar
Ginzburg, V. L., & Zheleznyakov, V. V., 1958, Sov. Astron. AJ, 2, 653 Google Scholar
Lin, R. P., Potter, D. W., Gurnett, D. A., & Scarf, F. L., 1981, ApJ, 251, 364 Google Scholar
Melrose, D. B. 1970a, Aust. J. Phys., 23, 871 Google Scholar
Melrose, D. B. 1970b, Aust. J. Phys., 23, 885 Google Scholar
Melrose, D. B., 1980, Space Sci. Rev., 26, 3 Google Scholar
Melrose, D. B., 1982, Sol. Phys., 79, 173 Google Scholar
Melrose, D.B., & Stenhouse, J. E., 1979, A&A, 73, 151 Google Scholar
Nelson, G. J., & Melrose, D. B., 1985, in Solar Radiophysics, ed. McLean, D. J. & Labrum, N. R. (Cambridge Univ. Press)Google Scholar
Poquérusse, M. 1994, A&A, 286, 611 Google Scholar
Robinson, P. A., & Newman, D. L., 1989, Phys. Fluids B, 1, 2319 Google Scholar
Robinson, P. A., Newman, D. L., & Rubenchik, A. M., 1992, Phys. Fluids B, 4, 2509 Google Scholar
Robinson, P. A., Willes, A. J., & Cairns, I. H., 1993, ApJ, 408, 720 Google Scholar
Smith, D. F., 1970, Adv. Astron. Astrophys., 7, 147 Google Scholar
Smith, D. F., 1972, ApJ, 174, 643 Google Scholar