Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T14:11:48.825Z Has data issue: false hasContentIssue false

Presolar Diamond in Meteorites

Published online by Cambridge University Press:  05 March 2013

Sachiko Amari*
Affiliation:
Laboratory for Space Sciences and the Physics Department, Washington University, St. Louis, MO 63130, USA. Email: sa@wuphys.wustl.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Presolar diamond, the carrier of the isotopically anomalous Xe component Xe–HL, was the first mineral type of presolar dust that was isolated from meteorites. The excesses in the light, p-process only isotopes 124Xe and 126Xe, and in the heavy, r-process only isotopes 134Xe and 136Xe relative to the solar ratios indicate that Xe–HL was produced in supernovae: they are the only stellar source where these two processes are believed to take place. Although these processes occur in supernovae, their physical conditions and timeframes are completely different. Yet the excesses are always correlated in diamond separates from meteorites. Furthermore, the p-process 124Xe/126Xe inferred from Xe–L and the r-process 134Xe/136Xe from Xe–H do not agree with the p-process and r-process ratios derived from the solar system abundance, and the inferred p-process ratio does not agree with those predicted from stellar models. The ‘rapid separation scenario’, where the separation of Xe and its radiogenic precursors Te and I takes place at the very early stage (7900 s after the end of the r-process), has been proposed to explain Xe–H. Alternatively, mixing of 20% of material that experienced neutron burst and 80% of solar material can reproduce the pattern of Xe–H, although Xe–L is not accounted for with this scenario.

Type
Grains
Copyright
Copyright © Astronomical Society of Australia 2009

References

Alaerts, L., Lewis, R. S., Matsuda, J.-i. & Anders, E., 1980, GeCoA, 44, 189 Google Scholar
Amari, S., Anders, E., Virag, A. & Zinner, E., 1990, Natur, 345, 238 Google Scholar
Anders, E., 1988, in Meteorites and the Early Solar System, Eds. Kerridge, J. F. & Matthews, M. S. (Tucson: University of Arizona Press), 927 Google Scholar
Argast, D., Samland, M., Thielemann, F.-K. & Qian, Y.-Z., 2004, A&A, 416, 997 Google Scholar
Bernatowicz, T., Fraundorf, G., Tang, M., Anders, E., Wopenka, B., Zinner, E. & Fraundorf, P., 1987, Natur, 330, 728 Google Scholar
Black, D. C. & Pepin, R. O., 1969, E&PSL, 6, 395 Google Scholar
Daulton, T. L., Eisenhour, D. D., Bernatowicz, T. J., Lewis, R. S. & Buseck, P. R., 1996, GeCoA, 60, 4853 CrossRefGoogle Scholar
Freiburghaus, C., Rosswog, S. & Thielemann, F.-K., 1999, ApJ, 525, L121 CrossRefGoogle Scholar
Heymann, D. & Dziczkaniec, M., 1979, LPSC, 10, 1943 Google Scholar
Heymann, D. & Dziczkaniec, M., 1980, Metic, 15, 1 Google Scholar
Howard, W. M., Meyer, B. S. & Clayton, D. D., 1992, Metic, 27, 404 Google Scholar
Huss, G. R. & Lewis, R. S., 1994a, Metic, 29, 791 Google Scholar
Huss, G. R. & Lewis, R. S., 1994b, Metic, 29, 811 Google Scholar
Huss, G. R. & Lewis, R. S., 1995, GeCoA, 59, 115 Google Scholar
Jungck, M. H. A., 1982, Pure 22Ne in the Meteorite Orgueil (München: E. Reinhardt), 80 Google Scholar
Lewis, R. S., Srinivasan, B. & Anders, E., 1975, Sci, 190, 1251 Google Scholar
Lewis, R. S., Tang, M., Wacker, J. F., Anders, E. & Steel, E., 1987, Natur, 326, 160 CrossRefGoogle Scholar
Lewis, R. S., Huss, G. R., Anders, E., Liu, Y.-G. & Schmitt, R. A., 1991, Metic, 26, 363 Google Scholar
Lewis, R. S., Amari, S. & Anders, E., 1994, GeCoA, 58, 471 Google Scholar
Lodders, K. & Amari, S., 2005, ChEG, 65, 93 Google Scholar
Maas, R., Loss, R. D., Rosman, K. J. R., DeLaeter, J. R., Lewis, R. S., Huss, G. R. & Lugmair, G. W., 2001, M&PS, 36, 849 Google Scholar
Meyer, B. S., Weaver, T. A. & Woosley, S. E. 1995, Metic, 30, 325 Google Scholar
Meyer, B. S., Clayton, D. D. & The, L.-S., 2000, ApJ, 540, L49 Google Scholar
Nicolussi, G. K., Pellin, M. J., Lewis, R. S., Davis, A. M., Amari, S. & Clayton, R. N., 1998, GeCoA, 62, 1093 Google Scholar
Ott, U., 1996, ApJ, 463, 344 CrossRefGoogle Scholar
Ott, U., 2002, NewAR, 46, 513 Google Scholar
Pellin, M. J., Davis, A. M., Lewis, R. S.,Amari, S. & Clayton, R. N., 1999, LPSC, 30, A1969 Google Scholar
Pepin, R. O., Becker, R. H. & Rider, P. E., 1995, GeCoA, 59, 4997 Google Scholar
Pignatari, M., Gallino, R., Straniero, O., Reifarth, R., Käppeler, F. & Davis, A. M., 2004, MmSAI, 75, 182 Google Scholar
Pirali, O., Vervloet, M., Dahl, J. E., Carlson, R. W. K., Tielens, A. G. G. M. & Oomens, J., 2007, ApJ, 661, 919 CrossRefGoogle Scholar
Rayet, M., Arnould, M., Hashimoto, M., Prantzos, N. & Nomoto, K., 1995, A&A, 298, 517 Google Scholar
Richter, S., Ott, U. & Begemann, F., 1998, Natur, 391, 261 Google Scholar
Russell, S. S., Arden, J. W. & Pillinger, C. T., 1996, M&PS, 31, 343 Google Scholar
Savina, M. R. et al., 2003, GeCoA, 67, 3201 CrossRefGoogle Scholar
Srinivasan, B. & Anders, E., 1978, Sci, 201, 51 Google Scholar
Takahashi, K., Witti, J. & Janka, H.-T., 1994, A&A, 286, 857 Google Scholar
Tang, T. & Anders, E., 1988, GeCoA, 52, 1235 Google Scholar
Wanajo, S., Kajino, T., Mathews, G. J. & Otsuki, K., 2001, ApJ, 554, 578 CrossRefGoogle Scholar
Wanajo, S., Tamamura, M., Itoh, N., Nomoto, K., Ishimaru, Y., Beers, T. C. & Nozawa, S., 2003, ApJ, 593, 968 Google Scholar
Wheeler, J. C., Cowan, J. J. & Hillebrandt, W., 1998, ApJ, 493, L101 Google Scholar
Woosley, S. E., Wilson, J. R., Mathews, G. J., Hoffman, R. D. & Meyer, B. S., 1994, ApJ, 433, 229 Google Scholar
Zinner, E., 2007, in Treatise on Geochemistry Update, Eds. Holland, H. D., Turekian, K. K. & Davis, A. (Oxford: Elsevier Ltd.), 1.02, 1 Google Scholar