Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-10T18:48:33.729Z Has data issue: false hasContentIssue false

Modelling Early-type Stars in Eclipsing Binaries of Open Clusters: A New Method for Age Determination from the Ratio of Radii

Published online by Cambridge University Press:  02 January 2013

M. Yıldız
Affiliation:
Ege University, Department of Astronomy and Space Sciences, Bornova, 35100 İzmir,Turkey. Email: mutlu.yildiz@ege.edu.tr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Binary systems, in particular eclipsing binaries, are essential sources of knowledge of the fundamental properties of stars. The ages of binaries, members of open clusters, are constrained by their own fundamental properties and by those of the hosting cluster. The ages of eleven open clusters are here found by constructing models for the components of twelve eclipsing binaries. The difference between the ages we find and the ages of the clusters derived from isochrone fitting is up to 40%. For the binary system V497 Cep in NGC 7160, the difference is about 100%. Binary systems whose primary component is about to complete its main-sequence lifetime, such as V453 Cyg and V906 Sco, are the most suitable systems for age determination. Using model results for these stars, we derive an expression for sensitive and uncomplicated relative age determination of binary systems (age divided by the main-sequence lifetime of the primary star). The expression is given as a logarithm of radii ratio divided by a logarithm of mass ratio. Two advantages of this expression are that: (i) it is nearly independent of the assumed chemical composition of the models because of the appearance of the ratio of radii; and (ii) the ratios of radii and masses are observationally much more precise than their absolute values. We also derive another expression using luminosities rather than radii and compare results.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Alencar, S. H. P., Vaz, L. P. R. & Helt, B. E., 1997, A&A, 326, 709Google Scholar
Andersen, J., 1991, A&AR, 3, 91Google Scholar
Asplund, M., Grevesse, N. & Sauval, A. J., 2005, in ASP Conf. Ser. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, Eds. Bash, F. N. & Barnes, T. G. (Astron. Soc. Pac.: San Francisco), 25 (AGS2005)Google Scholar
Bouzid, M. Y., Sterken, C. & Pribulla, T., 2005, A&A, 437, 769Google Scholar
Clausen, J. V., Garcia, J. M., Gimenez, A., Helt, B. E., Jensen, K. S., Suso, J. & Vaz, L. P. R., 1996, A&A, 308, 151Google Scholar
Debernardi, Y. & North, P., 2001, A&A, 374, 204Google Scholar
del Peloso, E. F., da Silva, L., Porto de Mello, G. F. & Arany-Prado, L. I., 2005, A&A, 440, 1153Google Scholar
Eggenberger, P., Miglio, A., Carrier, F., Fernandes, J. & Santos, N. C., 2008, A&A, 482, 631Google Scholar
Freyhammer, L. M., Hensberge, H., Sterken, C., Pavlovski, K., Smette, A. & Ilijic, S., 2005, A&A, 429, 631Google Scholar
Freyhammer, L. M., Hensberge, H., Sterken, C., De Cat, P. & Aerts, C., 2006, Mem. S.A.It., 77, 334Google Scholar
Garcia, E., Stassun, K. G., Hebb, L. & Heiser, A., 2010, AAS, 21541940Google Scholar
Girardi, L., Bertelli, G., Bressan, A., Chiosi, C., Groenewegen, M. A. T., Marigo, P., Salasnich, B. & Weiss, A., 2002, A&A, 391, 195Google Scholar
Groenewegen, M. A. T., Decin, L., Salaris, M. & De Cat, P., 2007, A&A, 463, 579Google Scholar
Hensberge, H., Pavlovski, K. & Verschueren, W., 2000, A&A, 358, 553Google Scholar
Kharchenko, N. V., Piskunov, A. E., Röser, S., Schilbach, E. & Scholz, R.-D., 2005, A&A, 438, 1163Google Scholar
Lastennet, E. & Valls-Gabaud, D., 2002, A&A, 396, 551Google Scholar
Mamajek, E. E. & Hillenbrand, L. A., 2008, ApJ, 687, 1264CrossRefGoogle Scholar
Meynet, G. & Maeder, A., 2000, A&A, 361, 101Google Scholar
Munari, U., Dallaporta, S., Siviero, A., Soubiran, C., Fiorucci, M. & Girard, P., 2004, A&A, 418, 31Google Scholar
Pavlovski, K. & Hensberge, H., 2005, A&A, 439, 309Google Scholar
Pavlovski, K. & Southworth, J., 2009, MNRAS, 394, 1519CrossRefGoogle Scholar
Pols, O. R., Tout, C. A., Schroder, K.-P., Eggleton, P. P. & Manners, J., 1997, MNRAS, 289, 869CrossRefGoogle Scholar
Schaller, G., Schaerer, D., Meynet, G. & Maeder, A., 1992, A&AS, 96, 269Google Scholar
Southworth, J., Maxted, P. F. L. & Smalley, B., 2004a, MNRAS, 349, 547CrossRefGoogle Scholar
Southworth, J., Maxted, P. F. L. & Smalley, B., 2004b, MNRAS, 351, 1277CrossRefGoogle Scholar
Southworth, J., Maxted, P. F. L. & Smalley, B., 2005, A&A, 429, 645Google Scholar
Southworth, J. & Clausen, J. V., 2006, Ap&SS, 304, 199Google Scholar
Southworth, J. & Clausen, J. V., 2007, A&A, 461, 1077Google Scholar
Torres, G., Andersen, J. & Gimenez, A., 2010, A&ARv, 18, 67Google Scholar
Williams, S. J., 2009, AJ, 137, 3222CrossRefGoogle Scholar
Yakut, K., Tarasov, A. E., İIbanoğlu, C., Harmanec, P., Kalomeni, B., Holmgren, D. E., Bozic, H. & Eenens, P., 2003, A&A, 405, 1087Google Scholar
Yıldız, M. & Kızıloğlu, N., 1997, A&A, 362, 187Google Scholar
Yıldız, M., 2003, A&A, 409, 689Google Scholar
Yıldız, M., 2005, MNRAS, 363, 967CrossRefGoogle Scholar
Yıldız, M., Yakut, K., Bakisş, H. & Noels, A., 2006, MNRAS, 368, 1941CrossRefGoogle Scholar
Yıldız, M., 2007, MNRAS, 374, 1264CrossRefGoogle Scholar
Yıldız, M., 2008, MNRAS, 388, 1143CrossRefGoogle Scholar