Skip to main content Accessibility help

The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

  • Randall Wayth (a1) (a2), Marcin Sokolowski (a1) (a2), Tom Booler (a1), Brian Crosse (a1), David Emrich (a1), Robert Grootjans (a1) (a3), Peter J. Hall (a1), Luke Horsley (a1), Budi Juswardy (a1), David Kenney (a1), Kim Steele (a1), Adrian Sutinjo (a1), Steven J. Tingay (a1) (a2) (a4), Daniel Ung (a1), Mia Walker (a1), Andrew Williams (a1), A. Beardsley (a5), T. M. O. Franzen (a1), M. Johnston-Hollitt (a6) (a7), D. L. Kaplan (a8), M. F. Morales (a9), D. Pallot (a10), C. M. Trott (a1) (a2) and C. Wu (a10)...


We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array’s receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.


Corresponding author


Hide All
Barry, N., Hazelton, B., Sullivan, I., Morales, M. F., & Pober, J. C. 2016, MNRAS, 461, 3135 10.1093/mnras/stw1380 2016MNRAS.461.3135B
Beardsley, A. P., et al. 2016, ApJ, 833, 102 10.3847/1538-4357/833/1/102 2016ApJ...833..102B
Bowman, J. D., et al. 2007, AJ, 133, 1505 10.1086/511068 2007AJ....133.1505B
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693 10.1086/300337 1998AJ....115.1693C
DeBoer, D. R., et al. 2017, PASP, 129, 045001 10.1088/1538-3873/129/974/045001 2017PASP..129d5001D
de Lera Acedo, E., Razavi-Ghods, N., Troop, N., Drought, N., & Faulkner, A. J. 2015, ExA, 39, 567 10.1007/s10686-015-9439-0 2015ExA....39..567D
de Oliveira-Costa, A., Tegmark, M., Gaensler, B. M., Jonas, J., Landecker, T. L., & Reich, P. 2008, MNRAS, 388, 247 10.1111/j.1365-2966.2008.13376.x 2008MNRAS.388..247D
Ellingson, S. W., et al. 2013, ITAP, 61, 2540 10.1109/TAP.2013.2242826 2013ITAP...61.2540E
Ewall-Wice, A., et al. 2016, MNRAS, 460, 4320 10.1093/mnras/stw1022 2016MNRAS.460.4320E
Greenhill, L. J., & Bernardi, G. 2012, arXiv:1201.1700 2012arXiv1201.1700G
Gupta, Y. 2014, in ASI Conf. Ser., Vol. 13, Proceedings of the Metrewavelength Sky, eds. Chengalur, J. N. & Gupta, Y. (Pune, India: NCRA-TIFR), 4412014ASInC..13..441G
Haslam, C. G. T., Salter, C. J., Stoffel, H., & Wilson, W. E. 1982, A&AS, 47, 1 1982A&AS...47....1H
Jacobs, D. C., et al. 2015, ApJ, 801, 51 10.1088/0004-637X/801/1/51 2015ApJ...801...51J
Koopmans, L., et al. 2015, in Proc. of Advancing Astrophysics with the Square Kilometre Array (AASKA14), eds. Bourke, T. L. et al. (Thatcham: Dolman Scott Ltd.), 15292015aska.confE...1K
Lane, W. M., Cotton, W. D., van Velzen, S., Clarke, T. E., Kassim N. E., Helmboldt, J. F., Lazio, T. J. W., & Cohen, A. S. 2014, MNRAS, 440, 327 10.1093/mnras/stu256 2014MNRAS.440..327L
Lonsdale, C. J., et al. 2009, IEEEP, 97, 1497 10.1109/JPROC.2009.2017564 2009IEEEP..97.1497L
Neben, A. R., et al. 2016a, ApJ, 820, 44 10.3847/0004-637X/820/1/44 2016ApJ...820...44N
Neben, A. R., et al. 2016b, ApJ, 826, 199 10.3847/0004-637X/826/2/199 2016ApJ...826..199N
Offringa, A. R., et al. 2015, PASA, 32, 8 10.1017/pasa.2015.7 2015PASA...32....8O
Offringa, A. R., et al. 2016, MNRAS, 458, 1057 10.1093/mnras/stw310 2016MNRAS.458.1057O
Ord, S. M., et al. 2015, PASA, 32, 6 10.1017/pasa.2015.5 2015PASA...32....6O
Parsons, A. R., et al. 2010, AJ, 139, 1468 10.1088/0004-6256/139/4/1468 2010AJ....139.1468P
Perley, R. A., Chandler, C. J., Butler, B. J., & Wrobel, J. M. 2011, ApJ, 739, L1 10.1088/2041-8205/739/1/L1 2011ApJ...739L...1P
Prabu, T., et al. 2015, ExA, 39, 73 10.1007/s10686-015-9444-3 2015ExA....39...73P
Rogers, A. E. E., Pratap, P., Kratzenberg, E., & Diaz, M. A. 2004, RaSc, 39, RS2023 10.1029/2003RS003016 2004RaSc...39.2023R
Sokolowski, M., Wayth, R. B., & Ellement, T. 2016, in 2016 Radio Frequency Interference (RFI), 105
Sokolowski, M., et al. 2015, ApJ, 813, 18 10.1088/0004-637X/813/1/18 2015ApJ...813...18S
Sokolowski, M., et al. 2017, PASA, accepted
Sutinjo, A. T., et al. 2015, ITAP, 63, 5433 10.1109/TAP.2015.2487504 2015ITAP...63.5433S
Tingay, S. J., et al. 2013, PASA, 30, 7 10.1017/pasa.2012.007 2013PASA...30....7T
Trott, C. M., & Wayth, R. B. 2016, PASA, 33, 19 10.1017/pasa.2016.18 2016PASA...33...19T
Turner, W. 2016, Technical Report SKA-TEL-SKO-0000008, SKA Phase 1 System Requirements Specification (Cheshire: SKA Organisation)
van Haarlem, M. P., et al. 2013, A&A, 556, A2 10.1051/0004-6361/201220873 2013A&A...556A...2V



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed