Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-nn2qz Total loading time: 9.676 Render date: 2021-04-20T08:46:46.692Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true }

Do Angular Momentum Induced Ellipticity Correlations Contaminate Weak Lensing Measurements?

Published online by Cambridge University Press:  05 March 2013

Priyamvada Natarajan
Affiliation:
Department of Astronomy, Yale University, New Haven, CT, USA; priya@astro.yale.edu
Robert G. Crittenden
Affiliation:
Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, UK; R.G.Crittenden@damtp.cam.ac.uk
Ue-Li Pen
Affiliation:
CITA, McLennan Labs, University of Toronto, Toronto, M5S 3H8, Canada; pen@cita.utoronto.ca
Tom Theuns
Affiliation:
Institute of Astronomy, Madingley Road, Cambridge CB3 0HE, UK; tt@ast.cam.ac.uk
Rights & Permissions[Opens in a new window]

Abstract

Alignments in the angular momentum vectors of galaxies can induce large scale correlations in their projected orientations. Such alignments arise from the tidal torques exerted on neighboring protogalaxies by the smoothly varying shear field. Weak gravitational lensing can also induce ellipticity correlations since the images of neighboring galaxies will be distorted coherently by the intervening mass distribution. Comparing these two sources of shape correlations, it is found that for current weak lensing surveys with a median redshift of z m = 1, the intrinsic signal is a contaminant on the order of 1–10% of the measured signal. However, for shallower surveys with z m ≤ 0.3, the intrinsic correlations dominate over the lensing signal. The distortions induced by lensing are curl-free, whereas those resulting from intrinsic alignments are not. This difference can be used to disentangle these two sources of ellipticity correlations. When the distortions are dominated by lensing, as occurs at high redshifts, the decomposition provides a valuable tool for understanding properties of the noise and systematic errors.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Bacon, D., Refregier, A., & Ellis, R. S. 2000, MNRAS, 318, 625 CrossRefGoogle Scholar
Bartelmann, M., & Schneider, P. 1999, Review for Physics Reports, preprint, astro-ph/9909155Google Scholar
Bernardeau, F., van Waerbeke, L., & Mellier, Y. 1997, A&A, 322, 1 Google Scholar
Blandford, R. D., Saust, A. B., Brainerd, T. G., & Villumsen, J. V. 1991, MNRAS, 251, 600 CrossRefGoogle Scholar
Brown, M. L., Taylor, A. N., Hambly, N. C., & Dye, S. 2000, preprint, astro-ph/0009499Google Scholar
Crittenden, R., Natarajan, P., Pen, U., & Theuns, T. 2001a, ApJ submitted, astro-ph/0009052Google Scholar
Crittenden, R., Natarajan, P., Pen, U., & Theuns, T. 2001b, ApJ submitted, astro-ph/0012336Google Scholar
Gunn, J. 1967, ApJ, 150, 737 CrossRefGoogle Scholar
Heavens, A., Refregier, A., & Heymans, C. 2000, MNRAS, 319, 649 CrossRefGoogle Scholar
Jain, B., & Seljak, U. 1997, ApJ, 484, 560 CrossRefGoogle Scholar
Jain, B., Seljak, U., & White, S. D. M. 2000, ApJ, 530, 547 CrossRefGoogle Scholar
Kaiser, N. 1992, APJ, 388, 272 CrossRefGoogle Scholar
Kaiser, N. 1995, ApJL, 439L, 1 Google Scholar
Kaiser, N., Wilson, G., & Luppino, G. 2000, preprint, astro-ph/0003338Google Scholar
Lee, J., & Pen, U. 2000, ApJ, 532, L5 CrossRefGoogle Scholar
Miralda-Escude, J. 1991, ApJ, 380, 1 CrossRefGoogle Scholar
van Waerbeke, L., et al. 2000, A&A, 358, 30 Google Scholar
Wittman, D., Tyson, J. A., Kirkman, D., Dell'Antonio, I., & Bernstein, G. 2000, Nature, 405, 143 CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 69 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 20th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Do Angular Momentum Induced Ellipticity Correlations Contaminate Weak Lensing Measurements?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Do Angular Momentum Induced Ellipticity Correlations Contaminate Weak Lensing Measurements?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Do Angular Momentum Induced Ellipticity Correlations Contaminate Weak Lensing Measurements?
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *