Skip to main content Accessibility help
×
Home

ATLAS probe: Breakthrough science of galaxy evolution, cosmology, Milky Way, and the Solar System

  • Yun Wang (a1), Massimo Robberto (a2) (a3), Mark Dickinson (a4), Lynne A. Hillenbrand (a5), Wesley Fraser (a6), Peter Behroozi (a7), Jarle Brinchmann (a8) (a9), Chia-Hsun Chuang (a10), Andrea Cimatti (a11) (a12), Robert Content (a13), Emanuele Daddi (a14), Henry C. Ferguson (a2), Christopher Hirata (a15), Michael J. Hudson (a16), J. Davy Kirkpatrick (a1), Alvaro Orsi (a17), Russell Ryan (a2), Alice Shapley (a18), Mario Ballardini (a19) (a20), Robert Barkhouser (a3), James Bartlett (a21), Robert Benjamin (a22), Ranga Chary (a1), Charlie Conroy (a23), Megan Donahue (a24), Olivier Doré (a21), Peter Eisenhardt (a21), Karl Glazebrook (a25), George Helou (a1), Sangeeta Malhotra (a26), Lauro Moscardini (a11) (a20) (a27), Jeffrey A. Newman (a28), Zoran Ninkov (a29), Michael Ressler (a21), James Rhoads (a26), Jason Rhodes (a21), Daniel Scolnic (a30), Stephen Smee (a3), Francesco Valentino (a31) (a32) and Risa H. Wechsler (a10) (a33)...

Abstract

Astrophysics Telescope for Large Area Spectroscopy Probe is a concept for a National Aeronautics and Space Administration probe-class space mission that will achieve ground-breaking science in the fields of galaxy evolution, cosmology, Milky Way, and the Solar System. It is the follow-up space mission to Wide Field Infrared Survey Telescope (WFIRST), boosting its scientific return by obtaining deep 1–4 μm slit spectroscopy for ∼70% of all galaxies imaged by the ∼2 000 deg2 WFIRST High Latitude Survey at z > 0.5. Astrophysics Telescope for Large Area Spectroscopy will measure accurate and precise redshifts for ∼200 M galaxies out to z < 7, and deliver spectra that enable a wide range of diagnostic studies of the physical properties of galaxies over most of cosmic history. Astrophysics Telescope for Large Area Spectroscopy Probe and WFIRST together will produce a 3D map of the Universe over 2 000 deg2, the definitive data sets for studying galaxy evolution, probing dark matter, dark energy and modifications of General Relativity, and quantifying the 3D structure and stellar content of the Milky Way. Astrophysics Telescope for Large Area Spectroscopy Probe science spans four broad categories: (1) Revolutionising galaxy evolution studies by tracing the relation between galaxies and dark matter from galaxy groups to cosmic voids and filaments, from the epoch of reionisation through the peak era of galaxy assembly; (2) Opening a new window into the dark Universe by weighing the dark matter filaments using 3D weak lensing with spectroscopic redshifts, and obtaining definitive measurements of dark energy and modification of General Relativity using galaxy clustering; (3) Probing the Milky Way’s dust-enshrouded regions, reaching the far side of our Galaxy; and (4) Exploring the formation history of the outer Solar System by characterising Kuiper Belt Objects. Astrophysics Telescope for Large Area Spectroscopy Probe is a 1.5 m telescope with a field of view of 0.4 deg2, and uses digital micro-mirror devices as slit selectors. It has a spectroscopic resolution of R = 1 000, and a wavelength range of 1–4 μm. The lack of slit spectroscopy from space over a wide field of view is the obvious gap in current and planned future space missions; Astrophysics Telescope for Large Area Spectroscopy fills this big gap with an unprecedented spectroscopic capability based on digital micro-mirror devices (with an estimated spectroscopic multiplex factor greater than 5 000). Astrophysics Telescope for Large Area Spectroscopy is designed to fit within the National Aeronautics and Space Administration probe-class space mission cost envelope; it has a single instrument, a telescope aperture that allows for a lighter launch vehicle, and mature technology (we have identified a path for digital micro-mirror devices to reach Technology Readiness Level 6 within 2 yr). Astrophysics Telescope for Large Area Spectroscopy Probe will lead to transformative science over the entire range of astrophysics: from galaxy evolution to the dark Universe, from Solar System objects to the dusty regions of the Milky Way.

Copyright

Corresponding author

Author for correspondence: Yun Wang, E-mail: wang@ipac.caltech.edu

References

Hide All
Abell, P. A., et al. 2009, LSST Science Book, arXiv:0912.0201
Abolfathi, B., et al. 2017, arXiv:1707.09322
Aghamousa, A., et al. 2016, The DESI experiment part I: science, targeting, and survey design, arXiv:1611.00036
Alcorn, L. Y., et al. 2018, ApJ, 858, 47
Alvarez-Candal, A., et al. 2011, A&A, 532, 130
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5
Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003, 402, 701
Barkume, K. M., Brown, M. E., & Schaller, E. L. 2008, AJ, 135, 55
Barucci, M. A., et al. 2011, ICARUS, 214, 297
Bate, M. R. 2014, MNRAS, 442, 285
Behroozi, P., et al. 2013, ApJ, 770, 57
Belli, S., et al. 2017, ApJ, 834, 18
Blake, C., & Glazebrook, K. 2003, ApJ, 594, 665B
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Bowler, R., et al. 2017, MNRAS, 469, 448
Brown, M. E., Schaller, E. L., & Fraser, W. C. 2012, AJ, 143, 146
Burgasser, A. J., Blake, C. H., Gelino, C. R., Sahlmann, J., & Bardalez Gagliuffi, D. 2016, ApJ, 827, 25
Burgasser, A. J., Sheppard, S. S., & Luhman, K. L. 2013, ApJ, 772, 129
Burgasser, A. J. 2007, AJ, 134, 1330
Burrows, A., et al. 1997, ApJ, 491, 856
Calabrò, A., et al. 2018, ApJ, 862, L22
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., & Storchi-Bergmann, T. 2000, ApJ, 533, 682
Carbone, C., Verde, L., Wang, Y., & Cimatti, A. 2011, JCAP 03, 030
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Carey, S., et al. 2008, in Spitzer Proposal ID No. 50398
Castellano, M., et al. 2016, ApJL, 818, L3
Chabrier, G. 2003, PASP, 115, 763
Chuang, C. H., Kitaura, F. S., Prada, F., Zhao, C., & Yepes, G. 2015, MNRAS, 446, 2621
Churchwell, E., et al. 2009, PASP, 121, 213
Cedeno, F. X. L., Gonzalez-Morales, A. X., & Urena-Lopez, L. A. 2017, PhRvD, 96, 061301
Charlot, S., & Fall, S. M. 2000, ApJ, 539, 718
Chen, Y.-M., et al. 2010, AJ, 140, 445
Cimatti, A., et al. (the SPACE Team), 2009, ExA, 23, 39
Connelley, M. S., & Greene, T. P. 2010, AJ, 140, 1214
Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486
Content, R. 2008, in Proceedings of the SPIE, 701025
Content, R., et al. 2008, in Proceedings of the SPIE, 70104S
Cooper, H. D. B., et al. 2013, MNRAS, 430, 1125
Cruikshank, D. P., et al. 1998, ICARUS, 135, 389
Cushing, M. C., Rayner, J. T., & Vacca, W. D. 2005, ApJ, 623 1115
Cushing, M. C., et al. 2011, ApJ, 743, 50
Cushing, M. C., et al. 2014, AJ, 147, 113
Daddi, E., et al. 2007, ApJ, 670, 156
Draine, B. T., & Li, A. 2001, ApJ, 551, 807
Draine, B. T. 2011, in Physics of the Interstellar and Intergalactic Medium, ed. Draine, B. T. (Princeton University Press). ISBN: 978-0-691-12214-4.
Driver, S., et al. 2009, A&G, 50, 5.12
Elbaz, D., et al. 2007, A&A, 468, 33
Epps, S. D., & Hudson, M. J. 2017, MNRAS, 468, 2605
Feltre, A., Charlot, S., & Gutkin, J. 2016, MNRAS, 456, 3354
Ferreras, I., et al., Chronos: a NIR spectroscopic galaxy survey. From the formation of galaxies to the peak of activity, arXiv:1306.6333, white paper for the science definition of ESA’s future L2, L3 missions
Finkelstein, S. L. 2016, PASA, 33, 37
Fourspring, K., et al. 2013, Opt. Eng. 52, 091807
Fraser, W. C., & Brown, M. E. 2012, ApJ, 749, 33
Fraser, W. C., Brown, M. E., Morbidelli, A., Parker, A., & Batygin, K. 2014, ApJ, 782, 100
Fraser, W. C., Brown, M. E., & Glass, F. ApJ, 804, 31
Fraser, W. C., et al. 2017, NatAs, 1, 88
Fraser, W. C., & Brown, M. E. 2018, AJ, 156, 23F
Gagrani, P., & Samushia, L. 2017, MNRAS, 467, 928
Gizis, J. E., & Reid, I. N. 1999, AJ, 117, 508
Gladman, B., Marsden, B. G., & Vanlaerhoven, C. 2008, in The Solar System Beyond Neptune, ed. M. Barucci, A., Boehnhardt, H., Cruikshank, D. P., Morbidelli, A., & Dotson, R. (Tucson: University of Arizona Press), 43
Gobat, R., et al. 2013, ApJ, 776, 9
Gonzalez, O. A., et al. 2012, A&A 543, A13
Gonzalez-Perez, V., et al. 2018, MNRAS, 474, 4024
Guo, Y., et al. 2013, ApJS, 207, 24
Guzzo, L., et al. 2008, Nature, 451, 541
Hearin, A. P., Behroozi, P. S., & van den Bosch, F. C. 2016, MNRAS, 461, 2135
Hlozek, R., Grin, D., Marsh, D. J. E., & Ferreira, P. G. 2015, PhRvD, 91, 103512
Hogg, D. W., Eilers, A.-C., & Rix, H.-W. 2018, Spectrophotometric parallaxes with Linear models: Accurate distances for Luminous red–giant stars
Hora, J., et al. 2007, in Spitzer Proposal ID No. 40184
Hounsell, R., et al. 2018, ApJ, 867, 23
Hudson, M. J., et al. 2015, MNRAS, 447, 298
Ibata, R. A., et al. 2017, ApJ, 848, 128
Izotov, Y. I., et al. 2018, MNRAS, 474, 4514
Izquierdo-Villalba, D., Orsi, A. A., Bonoli, S., Lacey, C. G., Baugh, C. M., & Griffin, A. J. 2018, MNRAS, 480, 1340
Kashino, D., et al. 2013, ApJ, 777, L8
Kennicutt, R. C. Jr 1998, ARA&A, 36, 189
Khostovan, A. A., et al. 2015, MNRAS, 452, 3948
Kirkpatrick, J. D., et al. 2016, ApJS, 224, 36
Kirkpatrick, J. D., et al. 2014, ApJ, 783, 122
Kirkpatrick, J. D., et al. 2012, ApJ, 753, 156
Kirkpatrick, J. D., et al. 2010, ApJS, 190, 100
Kirkpatrick, J. D. 2005, ARA&A, 43, 195
Kraljic, K., et al. 2018, MNRAS, 474, 547
Kravtsov, A. V., et al. 2013, ApJ, 764, 31
Kriek, M., et al. 2009, ApJ, 700, 221
Lacey, C. G., et al. 2016, MNRAS, 462, 3854
Lagos, C. d. P., et al. 2014, MNRAS, 443, 1002
Laureijs, R., et al. 2011, Euclid definition study report, arXiv:1110.3193
Lee, C. T., et al. 2017, MNRAS, 466, 3834
Lépine, S., & DiStefano, R. 2012, ApJ, 749, L6
Lesgourgues, J., & Pastor, S. 2006, PhR, 429, 307
Levison, H. F., Morbidelli, A., Van Laerhoven, C., Gomes, R., & Tsiganis, K. 2008, ICARUS, 196, 258
Long, P., et al. 2017, ApJ, 840, 92
Lucas, P. W., et al. 2010, MNRAS, 408, L56
Luhman, K. L. 2013, ApJ, 767, L1
MacKenty, J., et al. 2006, SPIE, 6269, 15
Majewski, S., et al. 2007, in Spitzer Proposal ID No. 40791
Marchesini, D., et al. 2007, ApJ, 656, 42
Martin, C. L., et al. 2012, ApJ, 760, 127
McDonald, P., & Seljak, U. 2009, JCAP, 10, 007
Meade, M. R., et al. 2014, GLIMPSE360 data description GLIMPSE360: completing the Spitzer galactic plane survey, https://irsa.ipac.caltech.edu/data/SPITZER/GLIMPSE/doc/glimpse360_dataprod_v1.5.pdf
Merson, A., et al. 2018, MNRAS, 474, 177
Meyer, R. D., et al. 2004, SPIE, 5492, 200M
Miyatake, H., et al. 2015, ApJ, 806, 1
More, S., et al. 2016, ApJ, 825, 39
Mostek, N., et al. (2013), ApJ, 767, 89
Moster, B. P., Naab, T., & White, S. D. M. 2013, MNRAS 428, 3121
Nesvorný, D., Vokrouhlický, D., & Morbidelli, A. 2007, AJ, 133, 1962
Newman, J. A. 2008, ApJ, 684, 88
Newman, J. A., et al. 2015, APh, 63, 81
Noeske, K. G., et al. 2007, ApJ, 660, L43
Norris, R. P., et al. 2011, PASA, 28, 215
Orsi, Á., Baugh, C. M., Lacey, C. G., Cimatti, A., Wang, Y., & Zamorani, G. 2010, MNRAS, 405, 1006
Orsi, Á.,, et al. 2014, MNRAS, 443, 799
Orsi, Á.,Fanidakis, N., Lacey, C. G., & Baugh, C. M. 2016, MNRAS, 456, 3827
Pannella, M., et al. 2015, ApJ, 807, 141
Parker, A., et al. 2016, PASP, 128, 8010
Parker, A., et al. 2015, Arxiv: 1511.01112
Peixinho, N., Delsanti, A., Guilbert-Lepoutre, A., Gafeira, R., & Lacerda, P. 2012, A&A, 546A, 86
Peixinho, N., Delsanti, A., & Doressoundiram, A. 2015, A&A, 577, 35
Perlmutter, S., et al. 1999, ApJ, 517, 565
Petit, J.-M., et al. 2011, AJ, 142, 131
Pike, R. E., et al. 2017, AJ, 154, 101
Pinfield, D. J., et al. 2014, MNRAS, 437, 1009
Price, S. H., et al. 2016, ApJ, 819, 80
Pozzetti, L., et al. 2016, A&A, 590A, 3
Puglisi, A., et al. 2016, A&A, 586, A83
Quijada, M., et al. 2016, SPIE, 9912, 99125V-1
Rayner, J. T., Cushing, M. C., & Vacca, W. D. 2009, ApJS, 185, 289
Riess, A., et al. 1998, AJ, 116, 1009
Robberto, M., et al. 2016, in Proceedings of the SPIE, Vol. 9908, 99088
Rodighiero, G., et al. 2011, ApJ, 739, L40
Rodighiero, G., et al. 2014, MNRAS, 443, 19
Rubin, K. H. R., et al. 2012, ApJL, 747, L26
Ryan, R. E. Jr, & Reid, I. N. 2016, AJ, 151, 92
Salpeter, E. E. 1955, ApJ, 121, 161
Sargent, M. T., et al. 2014, ApJ, 793, 19
Schreiber, C., et al. 2015, A&A, 575, A74
Senchyna, P., et al. 2017, MNRAS, 472, 2608
Seo, H., & Eisenstein, D. 2003, ApJ, 598, 720
Shapley, A. E., et al. 2003, ApJ, 588, 65
Sheppard, S. S. 2010, AJ, 139, 1394
Silverman, J. D., et al. 2015, ApJS, 220, 12
Sobral, D., et al. 2013, MNRAS, 428, 1128
Sobral, D., et al. 2015, ApJ, 808, 139
Sobral, D., et al. 2019, MNRAS, 482, 2422
Spanò, P., et al. 2009, SPIE 7436, 74360O-1
Spergel, D.N., et al. 2015, WFIRST SDT final report, arXiv:1503.03757
Stansberry, J., et al. 2008, The Solar System Beyond Neptune, ed. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., Morbidelli, A., & Dotson, R. (Tucson, University of Arizona Press) 161
Stark, D. P., et al. 2015, MNRAS, 450, 1846
Steidel, C. C., et al. 2010, ApJ, 717, 289
Steidel, C. C., et al. 2014, ApJ, 795, 165
Sullivan, M., et al. 2010, MNRAS, 406, 782
Tiley, A.L., et al. 2019, MNRAS, tmp 432T
Tilvi, V., et al. 2014, ApJ, 794, 5
Travinsky, A., et al. 2017, J. Astron. Telesc. Instrum. Syst., 3, 035003
Travinsky, A., et al. 2016, Opt. Eng. 55, 094107
Valentino, F., et al. 2015, ApJ, 801, 132
Valentino, F., et al. 2016, ApJ, 829, 53
Valentino, F., et al. 2017, MNRAS, 472, 4878
Van Dokkum, P. G., Kriek, M., & Franx, M. 2009, Nature, 460, 717
Vavrek, R. D., et al. (2016), in Proceedings of the SPIE, Vol. 9911, 991105
Verhamme, A., et al. 2017, A&A, 597, 13
Verhamme, A., Schaerer, D., & Maselli, A. 2006, A&A, 460, 397
Vorobiev, D., et al. 2016, SPIE, 9912, 99125M-1
Wang, S., Li, A., & Jiang, B. W. 2015, ApJ, 811, 38
Wang, Y. 2008, JCAP, 05, 021
Wang, Y., Spergel, D. N., & Strauss, M. 1999, ApJ, 510, 20
Wang, Y., Chuang, C.-H., & Hirata, C. M. 2013, MNRAS, 430, 2446
Wang, T., et al. 2016, ApJ, 828, 56
Weiner, B. J., et al., 2009, ApJ, 692, 187
Whitney, B., et al. 2008, in Spitzer Proposal ID No. 60020
Williams, R. J., Quadri, R. F., Franx, M., van Dokkum, P., & Labbé, I. 2009, ApJ, 691, 1879
Zamkotsian, F., et al. 2011, in Proceedings of the SPIE, Vol. 7932, 79320A
Zamkotsian, F., et al. 2017, in Proceedings of the SPIE, Vol. 10565, 1056521
Zhai, Z., et al. 2017, ApJ, 848, 76

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed