Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-9hjnw Total loading time: 0.392 Render date: 2022-07-01T12:10:31.875Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Investigation of the double-lobed sources of the Cygnus constellation core

Published online by Cambridge University Press:  07 September 2021

J. Saponara*
Affiliation:
Instituto Argentino de Radioastronomía, CONICET-CICPBA-UNLP, CC5 (1897) Villa Elisa, Prov. de Buenos Aires, Argentina
P. Benaglia
Affiliation:
Instituto Argentino de Radioastronomía, CONICET-CICPBA-UNLP, CC5 (1897) Villa Elisa, Prov. de Buenos Aires, Argentina
I. Andruchow
Affiliation:
Facultad de Cs. Astronómicas y Geofísicas, Universidad Nacional de La Plata Instituto de Astrofísica de La Plata (UNLP - CONICET, CCT La Plata)
C. H. Ishwara-Chandra
Affiliation:
National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Pune, 411007, India
H. T. Intema
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
*
*Author for correspondence: J. Saponara, E-mail: Juliana.saponara@gmail.com

Abstract

We present a collection of double-lobed sources towards a $20\,\mathrm{deg}^2$ area of the Cygnus region at the northern sky, observed at 325 and 610 MHz with the Giant Metrewave Radio Telescope. The 10 $^{\prime\prime}$ resolution achieved at 325 MHz is 5.5 times better than previous studies, while at 610 MHz, these are the first results ever of such a large area, mapped with 6 $^{\prime\prime}$ angular resolution. After a thorough visual inspection of the images at the two bands, we found 43 double-lobed source candidates, proposed as such due to the presence of 2 bright peaks, within a few arcminutes apart, joined by a bridge or a central nucleus. All but two are presented here as a double-lobed candidates for the first time. Thirty nine of the candidates were covered at both bands, and we provide the spectral index information for them. We have searched for positional coincidences between the detected sources/components and other objects from the literature, along the electromagnetic spectrum. Twenty-three candidates possess radio counterpart(s), 12 present infrared counterparts, and 1 showed an overlapping X-ray source. We analysed each candidate considering morphology, counterparts, and spectral indices. Out of the 43 candidates, 37 show characteristics compatible with an extragalactic nature, 2 of probably Galactic origin, 3 remain as dubious cases, though with feature(s) compatible with an extragalactic nature, and the remaining one, evidence of physically unrelated components. The median spectral index of the 40 putative extragalactic sources is $-1.0$ . Their celestial surface density at 610 MHz resulted in $1.9\,\mathrm{per\ deg}^2$ , across a region lying at the Galactic plane.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albacete Colombo, J. F., Caramazza, M., Flaccomio, E., Micela, G., & Sciortino, S. 2007, VizieR Online Data Catalog, pp J/A+A/474/495 CrossRefGoogle Scholar
Anderson, L. D., Armentrout, W. P., Johnstone, B. M., Bania, T. M., Balser, D. S., Wenger, T. V., & Cunningham, V. 2015, ApJS, 221, 26 CrossRefGoogle Scholar
Anglada, G., Rodríguez, L. F., & Carrasco-González, C. 2018, A&A Rev., 26, 3 CrossRefGoogle Scholar
Benaglia, P., De Becker, M., Ishwara-Chandra, C. H., Intema, H. T., & Isequilla, N. L. 2020a, PASA, 37, e030 CrossRefGoogle Scholar
Benaglia, P., Ishwara-Chandra, C. H., Intema, H., Colazo, M. E., & Gaikwad, M., 2020b, A&A, 642, A136 CrossRefGoogle Scholar
Benaglia, P., Ishwara-Chandra, C. H., Paredes, J. M., Intema, H. T., Colazo, M. E., Isequilla, N. L., 2021, ApJS, 252, 17 CrossRefGoogle Scholar
Bennett, C. L., Lawrence, C. R., Burke, B. F., Hewitt, J. N., & Mahoney, J., 1986, ApJS, 61, 1 CrossRefGoogle Scholar
Brocksopp, C., Kaiser, C. R., Schoenmakers, A. P., & de Bruyn, A. G. 2011, MNRAS, 410, 484 CrossRefGoogle Scholar
Brown, M. J. I., Duncan, K. J., Landt, H., Kirk, M., Ricci, C., Kamraj, N., Salvato, M., & Ananna, T. 2019, MNRAS, 489, 3351 CrossRefGoogle Scholar
Butt, Y. M., Combi, J. A., Drake, J., Finley, J. P., Konopelko, A., Lister, M., Rodriguez, J., & Shepherd, D. 2007, in The First GLAST Symposium, ed. Ritz, S., Michelson, P., & Meegan, C. A., American Institute of Physics Conference Series, vol. 921, 429430 (arXiv:astro-ph/0703017), 10.1063/1.2757386 Google Scholar
Carrasco-González, C., Rodrgíuez, L. F., Anglada, G., Martí, J., Torrelles, J. M., & Osorio, M. 2010, Science, 330, 1209 CrossRefGoogle Scholar
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693 CrossRefGoogle Scholar
Douglas, J. N., Bash, F. N., Bozyan, F. A., Torrence, G. W., & Wolfe, C. 1996a, VizieR Online Data Catalog, VIII/42 Google Scholar
Douglas, J. N., Bash, F. N., Bozyan, F. A., Torrence, G. W., & Wolfe, C. 1996b, AJ, 111, 1945 CrossRefGoogle Scholar
Elvis, M., Maccacaro, T., Wilson, A. S., Ward, M. J., Penston, M. V., Fosbury, R. A. E., & Perola, G. C. 1978, MNRAS, 183, 129 CrossRefGoogle Scholar
Evans, I. N., et al. 2010, ApJS, 189, 37 CrossRefGoogle Scholar
Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31P CrossRefGoogle Scholar
Ginzburg, V. L., & Syrovatskii, S. I. 1967, in International Cosmic Ray Conference, 48Google Scholar
Greisen, E. W. 2003, AIPS, the VLA, and the VLBA, 109, 10.1007/0-306-48080-8_7 CrossRefGoogle Scholar
Gürkan, G., Hardcastle, M. J., & Jarvis, M. J. 2014, MNRAS, 438, 1149 CrossRefGoogle Scholar
Ibar, E., Ivison, R. J., Best, P. N., Coppin, K., Pope, A., Smail, I., & Dunlop, J. S. 2010, MNRAS, 401, L53 CrossRefGoogle Scholar
Intema, H. T. 2014, in Astronomical Society of India Conference Series, 469 (arXiv:1402.4889)Google Scholar
Isequilla, N. L., Fernández-López, M., Benaglia, P., Ishwara-Chandra, C. H., & del Palacio, S. 2019, A&A, 627, A58 CrossRefGoogle Scholar
Isequilla, N. L., Benaglia, P., Ishwara-Chandra, C. H., & Intema, H. 2020, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 61B, 124 Google Scholar
Jones, T. J., Garwood, R., & Dickey, J. M. 1988, ApJ, 328, 559 CrossRefGoogle Scholar
Knödlseder, J., Cerviño, M., Le Duigou, J. M., Meynet, G., Schaerer, D., & von Ballmoos, P. 2002, A&A, 390, 945 CrossRefGoogle Scholar
Laing, R. A., Riley, J. M., & Longair, M. S. 1983, MNRAS, 204, 151 CrossRefGoogle Scholar
Lanzuisi, G., et al. 2013, MNRAS, 431, 978 CrossRefGoogle Scholar
Leahy, J. P., & Williams, A. G. 1984, MNRAS, 210, 929 CrossRefGoogle Scholar
Martí, J., Paredes, J. M., Ishwara Chandra, C. H., & Bosch-Ramon, V. 2007, A&A, 472, 557 CrossRefGoogle Scholar
Masetti, N., et al. 2013, A&A, 556, A120 Google Scholar
Morford, J. C., et al. 2020, A&A, 637, A64 Google Scholar
Münch, L., & Morgan, W. W. 1953, ApJ, 118, 161 CrossRefGoogle Scholar
Neugebauer, G., et al., 1984, ApJ, 278, L1 CrossRefGoogle Scholar
Ocran, E. F., Taylor, A. R., Vaccari, M., Ishwara-Chandra, C. H., & Prandoni, I. 2020, MNRAS, 491, 1127 CrossRefGoogle Scholar
Osterbrock, D. E. 1989, Astrophysics of gaseous nebulae and active galactic nuclei.CrossRefGoogle Scholar
Pal, S., & Kumari, S. 2021, arXiv e-prints, arXiv:2103.15199 Google Scholar
Pratap, P., & McIntosh, G. 2005, Am. J. Phys., 73, 399 CrossRefGoogle Scholar
Reddish, V. C., Lawrence, L. C., & Pratt, N. M. 1966, Publications of the Royal Observatory of Edinburgh, 5, 111 Google Scholar
Reipurth, B., & Schneider, N. 2008, Star Formation and Young Clusters in Cygnus, 36Google Scholar
Saikia, D. J., Thomasson, P., Roy, S., Pedlar, A., & Muxlow, T. W. B. 2004, MNRAS, 354, 827 CrossRefGoogle Scholar
Saxena, A., et al. 2018, MNRAS, 480, 2733 CrossRefGoogle Scholar
Schoenmakers, A. P., de Bruyn, A. G., Röttgering, H. J. A., van der Laan, H., & Kaiser, C. R. 2000, MNRAS, 315, 371 CrossRefGoogle Scholar
Schulte, D. H. 1956a, ApJ, 123, 250 CrossRefGoogle Scholar
Schulte, D. H. 1956b, ApJ, 124, 530 CrossRefGoogle Scholar
Schulte, D. H. 1958, ApJ, 128, 41 CrossRefGoogle Scholar
Setia Gunawan, D. Y. A., de Bruyn, A. G., van der Hucht, K. A., & Williams, P. M. 2003, ApJS, 149, 123 CrossRefGoogle Scholar
Skrutskie, M. F., et al. 2006, AJ, 131, 1163 CrossRefGoogle Scholar
Taylor, A. R., Goss, W. M., Coleman, P. H., van Leeuwen, J., & Wallace, B. J. 1996, ApJS, 107, 239 CrossRefGoogle Scholar
Werner, M. W., et al. 2004, ApJS, 154, 1 Google Scholar
Williams, P. M., Dougherty, S. M., Davis, R. J., van der Hucht, K. A., Bode, M. F., & Setia Gunawan, D. Y. A. 1997, MNRAS, 289, 10 CrossRefGoogle Scholar
Wright, E. L., et al. 2010, AJ, 140, 1868 Google Scholar
Zoonematkermani, S., Helfand, D. J., Becker, R. H., White, R. L., & Perley, R. A. 1990, ApJS, 74, 181 CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Investigation of the double-lobed sources of the Cygnus constellation core
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Investigation of the double-lobed sources of the Cygnus constellation core
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Investigation of the double-lobed sources of the Cygnus constellation core
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *