Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-w78fb Total loading time: 0.439 Render date: 2021-04-16T18:50:20.577Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The emission and scintillation properties of RRAT J2325−0530 at 154 MHz and 1.4 GHz

Published online by Cambridge University Press:  04 September 2019

B. W. Meyers
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710, Australia
S. E. Tremblay
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
N. D. R. Bhat
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
R. M. Shannon
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia ARC Centre of Excellence for Gravitational-wave Discovery (OzGrav), Australia
S. M. Ord
Affiliation:
CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710, Australia
C. Sobey
Affiliation:
CSIRO Astronomy and Space Science, P.O. Box 1130, Bentley, WA 6102, Australia
M. Johnston-Hollitt
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
M. Walker
Affiliation:
Curtin Institute of Radio Astronomy, GPO Box U1987, Perth, WA 6845, Australia
R. B. Wayth
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, Australia
Corresponding

Abstract

Rotating Radio Transients (RRATs) represent a relatively new class of pulsar, primarily characterised by their sporadic bursting emission of single pulses on time scales of minutes to hours. In addition to the difficulty involved in detecting these objects, low-frequency ( $ \lt 300\,\text{MHz}$ ) observations of RRATs are sparse, which makes understanding their broadband emission properties in the context of the normal pulsar population problematic. Here, we present the simultaneous detection of RRAT J2325−0530 using the Murchison Widefield Array (154 MHz) and Parkes radio telescope ( $1.4\,\text{GHz}$ ). On a single-pulse basis, we produce the first polarimetric profile of this pulsar, measure the spectral index ( $\alpha={-2.2\pm 0.1}$ ), pulse energy distributions, and present the pulse rates in the context of detections in previous epochs. We find that the distribution of time between subsequent pulses is consistent with a Poisson process and find no evidence of clustering over the $\sim\!1.5\,\text{h}$ observations. Finally, we are able to quantify the scintillation properties of RRAT J2325−0530 at 1.4 GHz, where the single pulses are modulated substantially across the observing bandwidth, and show that this characterisation is feasible even with irregular time sampling as a consequence of the sporadic emission behaviour.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bates, S. D., Lorimer, D. R., & Verbiest, J. P. W. 2013, MNRAS, 431, 1352 CrossRefGoogle Scholar
Bhat, N. D. R., Rao, A. P., & Gupta, Y. 1999, ApJS, 121, 483 CrossRefGoogle Scholar
Bhat, N. D. R., Cordes, J. M., Camilo, F., Nice, D. J., & Lorimer, D. R. 2004, ApJ, 605, 759 CrossRefGoogle Scholar
Bhat, N. D. R., Tingay, S. J., & Knight, H. S. 2008, ApJ, 676, 1200 CrossRefGoogle Scholar
Bhat, N. D. R., Ord, S. M., Tremblay, S. E., McSweeney, S. J., & Tingay, S. J. 2016, ApJ, 818, 86 CrossRefGoogle Scholar
Bhat, N. D. R., et al. 2018, ApJS, 238, 1 Google Scholar
Bhattacharyya, B., et al. 2018, MNRAS, 477, 4090 CrossRefGoogle Scholar
Boyles, J., et al. 2013, ApJ, 763, 80 Google Scholar
Brentjens, M. A., & de Bruyn, A. G. 2005, A&A, 441, 1217 CrossRefGoogle Scholar
Burke-Spolaor, S., & Bailes, M. 2010, MNRAS, 402, 855 CrossRefGoogle Scholar
Burke-Spolaor, S., et al. 2012, MNRAS, 423, 1351 CrossRefGoogle Scholar
Caleb, M., et al. 2019, MNRAS, p. 1287 Google Scholar
Cordes, J. M. 1986, ApJ, 311, 183 CrossRefGoogle Scholar
Cordes, J. M., & Lazio, T. J. W. 2002, preprint, (arXiv:astro-ph/0207156)Google Scholar
Cordes, J. M., & Lazio, T. J. W. 2003, preprint, (arXiv:astro-ph/0301598)Google Scholar
Cordes, J. M., & Rickett, B. J. 1998, ApJ, 507, 846 CrossRefGoogle Scholar
Cordes, J. M., & Shannon, R. M. 2008, ApJ, 682, 1152 CrossRefGoogle Scholar
Cordes, J. M., Wolszczan, A., Dewey, R. J., Blaskiewicz, M., & Stinebring, D. R. 1990, ApJ, 349, 245 CrossRefGoogle Scholar
Cordes, J. M., Bhat, N. D. R., Hankins, T. H., McLaughlin, M. A., & Kern, J. 2004, ApJ, 612, 375 CrossRefGoogle Scholar
Cui, B. Y., Boyles, J., McLaughlin, M. A., & Palliyaguru, N., 2017, ApJ, 840, 5 CrossRefGoogle Scholar
Dai, S., et al. 2015, MNRAS, 449, 3223 Google Scholar
Deller, A. T., Weisberg, J. M., Nice, D. J., & Chatterjee, S. 2018, ApJ, 862, 139 CrossRefGoogle Scholar
Everett, J. E., & Weisberg, J. M. 2001, ApJ, 553, 341 CrossRefGoogle Scholar
Gajjar, V. Joshi, B. C., & Kramer, M. 2012, MNRAS, 424, 1197 CrossRefGoogle Scholar
Gonzalez, M. E., et al. 2011, ApJ, 743, 102 CrossRefGoogle Scholar
Gould, D. M., & Lyne, A. G. 1998, MNRAS, 301, 235 CrossRefGoogle Scholar
Gupta, Y., Rickett, B. J., & Lyne, A. G., 1994, MNRAS, 269, 1035 CrossRefGoogle Scholar
Han, J. L., Manchester, R. N., van Straten, W., & Demorest, P. 2018, ApJS, 234, 11 CrossRefGoogle Scholar
Hernández-Pajares, M., et al. 2009, Journal of Geodesy, 83, 263 CrossRefGoogle Scholar
Hotan, A. W., van Straten, W., & Manchester, R. N. 2004, PASA, 21, 302 CrossRefGoogle Scholar
Hunter, J. D. 2007, CiSE, 9, 90 CrossRefGoogle Scholar
Jankowski, F., van Straten, W., Keane, E. F., Bailes, M., Barr, E. D., Johnston, S., & Kerr, M. 2018, MNRAS, 473, 4436 CrossRefGoogle Scholar
Janssen, G. H., Stappers, B. W., Bassa, C. G., Cognard, I., Kramer, M., Theureau, G. 2010, A&A, 514, A74 CrossRefGoogle Scholar
Jennings, R. J., Kaplan, D. L., Chatterjee, S., Cordes, J. M., & Deller, A. T. 2018, ApJ, 864, 26 CrossRefGoogle Scholar
Johnston, S., & Kerr, M. 2018, MNRAS, 474, 4629 CrossRefGoogle Scholar
Johnston, S., Nicastro, L., & Koribalski, B. 1998, MNRAS, 297, 108 CrossRefGoogle Scholar
Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open source scientific tools for Python, https://www.scipy.org/ Google Scholar
Karako-Argaman, C., et al. 2015, ApJ, 809, 67 CrossRefGoogle Scholar
Karastergiou, A., Hotan, A. W., van Straten, W., McLaughlin, M. A., & Ord, S. M. 2009, MNRAS, 396, L95 CrossRefGoogle Scholar
Karuppusamy, R., Stappers, B. W., & an Straten, W., 2010, A&A, 515, A36 CrossRefGoogle Scholar
Keane, E. F. 2016, MNRAS, 459, 1360 CrossRefGoogle Scholar
Keane, E. F., Kramer, M., Lyne, A. G., Stappers, B. W., & McLaughlin, M. A. 2011, MNRAS, 415, 3065 CrossRefGoogle Scholar
Kramer, M., Karastergiou, A., Gupta, Y., Johnston, S., Bhat, N. D. R., & Lyne, A. G. 2003, A&A, 407, 655 CrossRefGoogle Scholar
Levin, L., et al. 2016, ApJ, 818, 166 Google Scholar
Li, X.-D. 2006, ApJ, 646, L139 CrossRefGoogle Scholar
Li, J., Spitkovsky, A., & Tchekhovskoy, A. 2012, ApJ, 746, L24 CrossRefGoogle Scholar
Liu, K., Keane, E. F., Lee, K. J., Kramer, M., Cordes, J. M., & Purver, M. B. 2012, MNRAS, 420, 361 CrossRefGoogle Scholar
Lynch, R. S., et al. 2013, ApJ, 763, 81 Google Scholar
Lyne, A. G., & Smith, F. G. 1982, Nature, 298, 825 CrossRefGoogle Scholar
Manchester, R. N., Han, J. L., & Qiao, G. J. 1998, MNRAS, 295, 280 CrossRefGoogle Scholar
Manchester, R. N., et al. 2013, PASA, 30, e017 Google Scholar
Maron, O., Kijak, J., Kramer, M., & Wielebinski, R. 2000, A&AS, 147, 195 CrossRefGoogle Scholar
McLaughlin, M. A., et al. 2006, Nature, 439, 817 CrossRefGoogle Scholar
McLaughlin, M. A., et al. 2009, MNRAS, 400, 1431 CrossRefGoogle Scholar
Melrose, D. B., & Yuen, R. 2014, MNRAS, 437, 262 CrossRefGoogle Scholar
Meyers, B. W., et al. 2017, ApJ, 851, 20 CrossRefGoogle Scholar
Meyers, B. W., et al. 2018, ApJ, 869, 134 Google Scholar
Michel, F. C., & Dessler, A. J. 1981, ApJ, 251, 654 CrossRefGoogle Scholar
Mickaliger, M. B., et al. 2012, ApJ, 760, 64 CrossRefGoogle Scholar
Mickaliger, M. B., McEwen, A. E., McLaughlin, M. A., & Lorimer, D. R. 2018, MNRAS, 479, 5413 CrossRefGoogle Scholar
Mitchell, D. A., Greenhill, L. J., Wayth, R. B., Sault, R. J., Lonsdale, C. J., Cappallo, R. J., Morales, M. F., & Ord, S. M. 2008, J-STSP, 2, 707 CrossRefGoogle Scholar
Mitra, D., Wielebinski, R., Kramer, M., & Jessner, A., 2003, A&A, 398, 993 CrossRefGoogle Scholar
Mitra, D., Basu, R., Maciesiak, K., Skrzypczak, A., Melikidze, G. I., Szary, A., Krzeszowski, K. 2016, ApJ, 833, 28 CrossRefGoogle Scholar
Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. 2014, LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, doi:10.5281/zenodo.11813, https://doi.org/10.5281/zenodo.11813 CrossRefGoogle Scholar
Noutsos, A., Johnston, S., Kramer, M., & Karastergiou, A. 2008, MNRAS, 386, 1881 CrossRefGoogle Scholar
Offringa, A. R., et al. 2013, A&A, 549, A11 Google Scholar
Offringa, A. R., et al. 2015, PASA, 32, e008 Google Scholar
de Oliveira-Costa, A., Tegmark, M., Gaensler, B. M., Jonas, J., Landecker, T. L., Reich, P., 2008, MNRAS, 388, 247 CrossRefGoogle Scholar
Ord, S. M., van Straten, W., Hotan, A. W., & Bailes, M., 2004, MNRAS, 352, 804 CrossRefGoogle Scholar
Ord, S. M., et al. 2015, PASA, 32, e006 Google Scholar
Ord, S. M., Tremblay, S. E., McSweeney, S. J., Bhat, N. D. R., Sobey, C., Mitchell, D. A., Hancock, P. J., & Kirsten, F. 2019, PASA 36, e030 CrossRefGoogle Scholar
Palliyaguru, N. T., et al. 2011, MNRAS, 417, 1871 CrossRefGoogle Scholar
Phillips, J. A., & Clegg, A.W. 1992, Nature, 360, 137 CrossRefGoogle Scholar
Redman, S. L., & Rankin, J. M. 2009, MNRAS, 395, 1529 CrossRefGoogle Scholar
Rickett, B. J. 1990, ARA&A, 28, 561 CrossRefGoogle Scholar
Shannon, R. M., et al. 2014, MNRAS, 443, 1463 Google Scholar
Shapiro-Albert, B. J., McLaughlin, M. A., & Keane, E. F., 2018, ApJ, 866, 152 CrossRefGoogle Scholar
Sobey, C., et al. 2019, MNRAS, 484, 3646 Google Scholar
Sotomayor-Beltran, C., et al. 2013, A&A, 552, A58 Google Scholar
Stappers, B. W., et al. 2011, A&A, 530, A80 Google Scholar
Stovall, K., et al. 2015, ApJ, 808, 156 CrossRefGoogle Scholar
Sutinjo, A., O’Sullivan, J., Lenc, E., Wayth, R. B., Padhi, S., Hall, P., & Tingay, S. J. 2015, Radio Science, 50, 52 CrossRefGoogle Scholar
Taylor, M. B. 2006, in Astronomical Society of the Pacific Conference Series, ed. Gabriel, C., Arviset, C., Ponz, D., & Enrique, S. (Vol. 351; Astronomical Data Analysis Software and Systems XV), 666Google Scholar
Taylor, G. B., et al. 2012, JAI, 1, 1250004 Google Scholar
Taylor, G. B., Stovall, K., McCrackan, M., McLaughlin, M. A., Miller, R., Karako-Argaman, C., Dowell, J., & Schinzel, F. K. 2016, ApJ, 831, 140 CrossRefGoogle Scholar
The Astropy Collaboration et al. 2013, A&A, 558, A33 Google Scholar
The Astropy Collaboration et al. 2018, AJ, 156, 123 Google Scholar
Thébault, E., et al. 2015, EPS, 67, 79 CrossRefGoogle Scholar
Timokhin, A. N. 2010, MNRAS, 408, L41 CrossRefGoogle Scholar
Tingay, S. J., et al. 2013, PASA, 30, e007 Google Scholar
Tremblay, S. E., et al. 2015, PASA, 32, e005 Google Scholar
Wang, N., Manchester, R. N., & Johnston, S., 2007, MNRAS, 377, 1383 CrossRefGoogle Scholar
Wayth, R. B., et al. 2018, PASA, 35, 33 CrossRefGoogle Scholar
Weisberg, J. M., et al. 1999, ApJS, 121, 171 CrossRefGoogle Scholar
Xue, M., Ord, S. M., Tremblay, S. E., Bhat, N. D. R., Sobey, C., Meyers, B. W., McSweeney, S. J., & Swainston, N. A. 2019, PASA, 36, e025 CrossRefGoogle Scholar
Yao, J. M., Manchester, R. N., Wang, N., 2017, ApJ, 835, 29 CrossRefGoogle Scholar
van Haarlem, M. P., et al., 2013, A&A, 556, A2 Google Scholar
van Straten, W., Bailes, M., 2011, PASA, 28, 1 CrossRefGoogle Scholar
van Straten, W., Manchester, R. N., Johnston, S., Reynolds, J. E., 2010, PASA, 27, 104 CrossRefGoogle Scholar
van Straten, W., Demorest, P., Oslowski, S., 2012, AR&T, 9, 237 Google Scholar
van der Walt, S., Colbert, S. C., Varoquaux, G., 2011, CiSE, 13, 22 CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 11
Total number of PDF views: 68 *
View data table for this chart

* Views captured on Cambridge Core between 04th September 2019 - 16th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The emission and scintillation properties of RRAT J2325−0530 at 154 MHz and 1.4 GHz
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The emission and scintillation properties of RRAT J2325−0530 at 154 MHz and 1.4 GHz
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The emission and scintillation properties of RRAT J2325−0530 at 154 MHz and 1.4 GHz
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *