Skip to main content Accessibility help
×
Home

An optimised gravitational wave follow-up strategy with the Australian Square Kilometre Array Pathfinder

Published online by Cambridge University Press:  29 April 2019


D. Dobie
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia ATNF, CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia
T. Murphy
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
D. L. Kaplan
Affiliation:
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
S. Ghosh
Affiliation:
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
K. W. Bannister
Affiliation:
ATNF, CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia
R. W. Hunstead
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
Corresponding

Abstract

The detection of a neutron star merger by the Advanced Laser Interferometer Gravitational-Wave Observatory and Advanced Virgo gravitational wave detectors, and the subsequent detection of an electromagnetic counterpart have opened a new era of transient astronomy. With upgrades to the Advanced Laser Interferometer Gravitational-Wave Observatory and Advanced Virgo detectors and new detectors coming online in Japan and India, neutron star mergers will be detected at a higher rate in the future, starting with the O3 observing run which will begin in early 2019. The detection of electromagnetic emission from these mergers provides vital information about merger parameters and allows independent measurement of the Hubble constant. The Australian Square Kilometre Array Pathfinder is expected to become fully operational in early 2019, and its 30 deg2 field of view will enable us to rapidly survey large areas of sky. In this work we explore prospects for detecting both prompt and long-term radio emission from neutron star mergers with Australian Square Kilometre Array Pathfinder and determine an observing strategy that optimises the use of telescope time. We investigate different strategies to tile the sky with telescope pointings in order to detect radio counterparts with limited observing time, using 475 simulated gravitational wave events. Our results show a significant improvement in observing efficiency when compared with a naïve strategy of covering the entire localisation above some confidence threshold, even when achieving the same total probability covered.


Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abbott, B. P., et al. 2016, PhRvD, 93, 122008Google Scholar
Abbott, B. P., et al. 2017a, Classical Quantum Gravity, 34, 044001CrossRefGoogle Scholar
Abbott, B. P., et al. 2017b, PhRvL, 118, 221101Google Scholar
Abbott, B. P., et al. 2017c, PhRvL, 119, 141101Google Scholar
Abbott, B. P., et al. 2017d, PhRvL, 119, 161101Google Scholar
Abbott, B. P., et al. 2017e, Nature, 551, 85CrossRefGoogle Scholar
Abbott, B. P., et al. 2017f, ApJ, 848, L12Google Scholar
Abbott, B. P., et al. 2017g, ApJ, 848, L13Google Scholar
Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., & Ackley, K. 2017h, ApJ, 851, L35CrossRefGoogle Scholar
Abbott, B. P., et al. 2018, Living Rev. Relativ., 21, 3CrossRefGoogle Scholar
Alexander, K. D., et al. 2018, ApJ, 863, L18Google Scholar
Andreoni, I., et al. 2017, PASA, 34, e069Google Scholar
Arcavi, I., et al. 2017, ApJ, 848, L33CrossRefGoogle Scholar
Aso, Y., Michimura, Y., Somiya, K., Ando, M., Miyakawa, O., Sekiguchi, T., Tatsumi, D., & Yamamoto, H. 2013, PhRvD, 88, 043007Google Scholar
Astropy Collaboration, et al. 2018, AJ, 156, 123CrossRefGoogle Scholar
Bannister, K. W., Murphy, T., Gaensler, B. M., Hunstead, R. W., & Chatterjee, S. 2011, MNRAS, 412, 634CrossRefGoogle Scholar
Bannister, K. W., et al. 2017a, ApJ, 841, L12CrossRefGoogle Scholar
Bannister, K., Shannon, R., Hotan, A., James, C., Macquart, J.-P., Oslowski, S., & Farah, W. 2017b, GCN, 21562Google Scholar
Bannister, K., Shannon, R., Hotan, A., James, C., Macquart, J.-P., Oslowski, S., & Farah, W. 2017c, GCN, 21671Google Scholar
Bartos, I., et al. 2014, MNRAS, 443, 738Google Scholar
Berger, E. 2014, ARA&A, 52, 43CrossRefGoogle Scholar
Bhandari, S., et al. 2018, MNRAS, 478, 1784CrossRefGoogle Scholar
Bock, D. C.-J., Large, M. I., & Sadler, E. M. 1999, AJ, 117, 1578Google Scholar
Chan, M. L., Messenger, C., Heng, I. S., & Hendry, M. 2018, PhRvD, 97, 123014Google Scholar
Chu, Q., Howell, E. J., Rowlinson, A., Gao, H., Zhang, B., Tingay, S. J., Boër, M., & Wen, L. 2016, MNRAS, 459, 121CrossRefGoogle Scholar
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693CrossRefGoogle Scholar
Cook, D. O., Van Sistine, A., Singer, L., & Kasliwal, M. M. 2017, GCN, 21519Google Scholar
Corsi, A., et al. 2018, ApJ, 861, L10CrossRefGoogle Scholar
Coughlin, M., & Stubbs, C. 2016, ExA, 42, 165Google Scholar
Coulter, D. A., et al. 2017, Sci, 358, 1556Google Scholar
D’Avanzo, P., et al. 2018, A&A, 613, L1Google Scholar
Dálya, G., et al. 2018, MNRAS, 479, 2374CrossRefGoogle Scholar
Dobie, D., Hotan, A., Bannister, K., Kaplan, D., Murphy, T., & Lynch, C. 2017a, GCN, 21625Google Scholar
Dobie, D., Hotan, A., Bannister, K., Kaplan, D., Murphy, T., & Lynch, C. 2017b, GCN, 21639Google Scholar
Dobie, D., et al. 2018, ApJ, 858, L15CrossRefGoogle Scholar
Dolag, K., Gaensler, B. M., Beck, A. M., & Beck, M. C. 2015, MNRAS, 451, 4277CrossRefGoogle Scholar
Evans, P. A., et al. 2016, MNRAS, 462, 1591CrossRefGoogle Scholar
Evans, P. A., et al. 2017, Sci, 358, 1565CrossRefGoogle Scholar
Falcke, H., & Rezzolla, L. 2014, A&A, 562, A137Google Scholar
Fong, W., Berger, E., Margutti, R., & Zauderer, B. A. 2015, ApJ, 815, 102CrossRefGoogle Scholar
Ghosh, S., Bloemen, S., Nelemans, G., Groot, P. J., & Price, L. R. 2016, A&A, 592, A82Google Scholar
Ghosh, S., Chatterjee, D., Kaplan, D. L., Brady, P. R., &Van Sistine, A. 2017, PASP, 129, 114503CrossRefGoogle Scholar
Goldstein, A., et al. 2017, ApJ, 848, L14CrossRefGoogle Scholar
Gottlieb, O., Nakar, E., & Piran, T. 2018, MNRAS, 473, 576CrossRefGoogle Scholar
Granot, J., et al. 2002, ApJ, 570, L61CrossRefGoogle Scholar
Haggard, D., Nynka, M., Ruan, J. J., Kalogera, V., Cenko, S. B., Evans, P. & Kennea, J. A. 2017, ApJ, 848, L25CrossRefGoogle Scholar
Hallinan, G., et al. 2017, Sci, 358, 1579CrossRefGoogle Scholar
Hampson, G., et al. 2012, in 2012 International Conference on Electromagnetics in Advanced Applications (IEEE), 807. doi: 10.1109/ICEAA.2012.6328742CrossRefGoogle Scholar
Hancock, P. J., Drury, J. A., Bell, M. E., Murphy, T., & Gaensler, B. M. 2016, MNRAS, 461, 3314Google Scholar
Hotokezaka, K., & Piran, T. 2015, MNRAS, 450, 1430CrossRefGoogle Scholar
Hotokezaka, K., Nissanke, S., Hallinan, G., Lazio, T. J. W., Nakar, E., & Piran, T. 2016, ApJ, 831, 190CrossRefGoogle Scholar
Hotokezaka, K., Nakar, E., Gottlieb, O., Nissanke, S., Masuda, K., Hallinan, G., Mooley, K. P., & Deller, A. T. 2018, preprint, arXiv:1806.10596Google Scholar
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90CrossRefGoogle Scholar
Inoue, S. 2004, MNRAS, 348, 999CrossRefGoogle Scholar
Ioka, K. 2003, ApJ, 598, L79CrossRefGoogle Scholar
Johnston, S., et al. 2008, ExA, 22, 151Google Scholar
Klimenko, S., et al. 2011, PhRvD, 83, 102001Google Scholar
Kopparapu, R. K., Hanna, C., Kalogera, V., O’Shaughnessy, R., González, G., Brady, P. R., & Fairhurst, S. 2008, ApJ, 675, 1459CrossRefGoogle Scholar
Lamb, G. P., Mandel, I., & Resmi, L. 2018, MNRAS, 481, 2581CrossRefGoogle Scholar
Lazzati, D., Deich, A., Morsony, B. J., & Workman, J. C. 2017, MNRAS, 471, 1652CrossRefGoogle Scholar
Lazzati, D., Perna, R., Morsony, B. J., Lopez-Camara, D., Cantiello, M., Ciolfi, R., Giacomazzo, B., & Workman, J. C. 2018, PhRvL, 120, 241103Google Scholar
Lipunov, V. M., & Panchenko, I. E. 1996, A&A, 312, 937Google Scholar
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., & Crawford, F. 2007, Sci, 318, 777CrossRefGoogle Scholar
Macquart, J. P., Shannon, R. M., Bannister, K. W., James, C. W., Ekers, R. D., & Bunton, J. D. 2018, preprint, arXiv:1810.04353Google Scholar
Mahony, E. K., et al. 2018, ApJ, 867, L10Google Scholar
Margutti, R., et al. 2018, ApJ, 856, L18CrossRefGoogle Scholar
Mauch, T., Murphy, T., Buttery, H. J., Curran, J., Hunstead, R. W., Piestrzynski, B., Robertson, J. G., & Sadler, E. M. 2003, MNRAS, 342, 1117CrossRefGoogle Scholar
Metzger, B. D., & Berger, E. 2012, ApJ, 746, 48CrossRefGoogle Scholar
Mooley, K. P., Frail, D. A., Ofek, E. O., Miller, N. A., Kulkarni, S. R., & Horesh, A. 2013, ApJ, 768, 165CrossRefGoogle Scholar
Mooley, K. P., et al. 2018a, Nature, 554, 207CrossRefGoogle Scholar
Mooley, K. P., et al. 2018b, Nature, 561, 355CrossRefGoogle Scholar
Mooley, K. P., et al. 2018c, ApJ, 868, L11CrossRefGoogle Scholar
Murphy, T., et al. 2013, PASA, 30, e006CrossRefGoogle Scholar
Nakar, E., & Piran, T. 2011, Nature, 478, 82CrossRefGoogle Scholar
Nakar, E., & Piran, T. 2018, MNRAS, 478, 407CrossRefGoogle Scholar
Nissanke, S., Kasliwal, M., & Georgieva, A. 2013, ApJ, 767, 124CrossRefGoogle Scholar
Norris, R. P., et al. 2011, PASA, 28, 215CrossRefGoogle Scholar
Petroff, E., et al. 2016, PASA, 33, e045CrossRefGoogle Scholar
Pshirkov, M. S., & Postnov, K. A. 2010, Ap&SS, 330, 13Google Scholar
Resmi, L., et al. 2018, preprint, arXiv:1803.02768Google Scholar
Salafia, O. S., Colpi, M., Branchesi, M., Chassande-Mottin, E., Ghirlanda, G., Ghisellini, G., & Vergani, S. D. 2017, ApJ, 846, 62CrossRefGoogle Scholar
Sari, R., Piran, T., & Narayan, R. 1998, ApJ, 497, L17CrossRefGoogle Scholar
Schutz, B. F. 2011, Classical Quantum Gravity, 28, 125023Google Scholar
Shannon, R., et al. 2018, Nature, 562, 386CrossRefGoogle Scholar
Singer, L. P., et al. 2014, ApJ, 795, 105CrossRefGoogle Scholar
Somiya, K. 2012, Classical Quantum Gravity, 29, 124007CrossRefGoogle Scholar
The LIGO Scientific Collaboration, & the Virgo Collaboration 2017a, GCN, 21513Google Scholar
The LIGO Scientific Collaboration, & the Virgo Collaboration 2017b, GCN, 21983Google Scholar
The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., & Ackley, K., et al. 2018, preprint, arXiv:1805.11579Google Scholar
Thornton, D., et al. 2013, Sci, 341, 53CrossRefGoogle Scholar
Totani, T. 2013, PASJ, 65, L12CrossRefGoogle Scholar
Troja, E., et al. 2017, Nature, 551, 71CrossRefGoogle Scholar
Unnikrishnan, C. S. 2013, Int. J. Mod. Phys. D, 22, 1341010CrossRefGoogle Scholar
Wang, J.-S., Yang, Y.-P., Wu, X.-F., Dai, Z.-G., & Wang, F.-Y. 2016, ApJ, 822, L7CrossRefGoogle Scholar
White, D. J., Daw, E. J., & Dhillon, V. S., 2011, Classical Quantum Gravity, 28, 085016CrossRefGoogle Scholar
Zhang, B. 2014, ApJ, 780, L21CrossRefGoogle Scholar
van Eerten, E. T. H., Ryan, G., Ricci, R., Burgess, J. M., Wieringa, M., Piro, L., Cenko, S. B., & Sakamoto, T. 2018, preprint, arXiv:1808.06617Google Scholar
van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Comput. Sci. Eng., 13, 22CrossRefGoogle Scholar

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 5
Total number of PDF views: 70 *
View data table for this chart

* Views captured on Cambridge Core between 29th April 2019 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-n2swh Total loading time: 0.635 Render date: 2020-12-01T18:28:00.143Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 18:04:34 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An optimised gravitational wave follow-up strategy with the Australian Square Kilometre Array Pathfinder
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

An optimised gravitational wave follow-up strategy with the Australian Square Kilometre Array Pathfinder
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

An optimised gravitational wave follow-up strategy with the Australian Square Kilometre Array Pathfinder
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *