Skip to main content Accessibility help

Weight resilience and fruit and vegetable intake among African-American women in an obesogenic environment

  • Sara M Parisi (a1), Lisa M Bodnar (a1) (a2) (a3) and Tamara Dubowitz (a4)



To investigate relationships between weight resilience (maintaining a normal weight in a food desert environment) and fruit and vegetable (F&V) intake, attitudes and barriers.


Cross-sectional, in-person surveys collected May–December 2011, including self-reported data on F&V-related psychosocial factors, attitudes and barriers. Two 24 h dietary recalls were completed; weight and height were measured. Multivariable regression models estimated prevalence ratios (95 % CI).


Two low-income, predominantly African-American food deserts in Pittsburgh, Pennsylvania, USA.


Women aged 18–49 years (n 279) who were the primary food shopper in a household randomly selected for a parent study.


Fifteen per cent were weight resilient, 30 % were overweight and 55 % were obese. Overall, 25 % reported eating ≥5 F&V servings/d. After adjustment for age, education, parity, employment, living alone, physical activity, per capita income and mean daily energy intake, women eating ≥5 F&V servings/d were 94 % more likely to be weight resilient compared with those eating <5 servings/d (1·94; 1·10, 3·43). Across BMI groups, self-efficacy regarding F&V consumption was high and few F&V barriers were reported. The most frequently reported barrier was concern about the cost of F&V (36 %). Of the attitudinal F&V-related factors, only concern about wasting food when serving F&V was associated with weight resilience in adjusted models (0·29; 0·09, 0·94). In a model predicting consuming ≥5 F&V servings/d, driving one’s own car to the store was the only attitudinal F&V-related factor associated with consumption (1·50; 1·00, 2·24).


In this population, weight resilience may be encouraged by improving access to affordable and convenient F&V options and providing education on ways to make them palatable to the entire household, rather than by shifting women’s F&V perceptions, which are already positive.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Weight resilience and fruit and vegetable intake among African-American women in an obesogenic environment
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Weight resilience and fruit and vegetable intake among African-American women in an obesogenic environment
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Weight resilience and fruit and vegetable intake among African-American women in an obesogenic environment
      Available formats


Corresponding author

* Corresponding author: Email


Hide All
1. Larson, NI, Story, MT & Nelson, MC (2009) Neighborhood environments: disparities in access to healthy foods in the US. Am J Prev Med 36, 7481.e10.
2. Walker, RE, Keane, CR & Burke, JG (2010) Disparities and access to healthy food in the United States: a review of food deserts literature. Health Place 16, 876884.
3. Ball, K & Crawford, D (2006) Socio-economic factors in obesity: a case of slim chance in a fat world? Asia Pacific J Clin Nutr 15, 1520.
4. Ball, KD & Dollman, J (2010) Physical activity, healthy eating and obesity prevention: understanding and promoting ‘resilience’ amongst socioeconomically disadvantaged groups. Australas Epidmiol 17, 1617.
5. Flegal, KM, Kruszon-Moran, D, Carroll, MD et al. (2016) Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315, 22842291.
6. Kulie, T, Slattengren, A, Redmer, J et al. (2011) Obesity and women’s health: an evidence-based review. J Am Board Fam Med 24, 7585.
7. Lash, MM & Armstrong, A (2009) Impact of obesity on women’s health. Fertil Steril 91, 17121716.
8. Robinson, J & Burke, A (2013) Obesity and hormonal contraceptive efficacy. Womens Health (Lond) 9, 453466.
9. Siega-Riz, A & King, J, American Dietetic Association, et al. (2009) Position of the American Dietetic Association and American Society for Nutrition: Obesity, reproduction, and pregnancy outcomes. J Am Diet Assoc 109, 918927.
10. Honein, MA, Devine, O, Sharma, AJ et al. (2013) Modeling the potential public health impact of prepregnancy obesity on adverse fetal and infant outcomes. Obesity (Silver Spring) 21, 12761283.
11. Bodnar, LM, Siminerio, LL, Himes, KP et al. (2016) Maternal obesity and gestational weight gain are risk factors for infant death. Obesity (Silver Spring) 24, 490498.
12. Walker, L, Timmerman, G, Sterling, B et al. (2004) Do low-income women attain their pre-pregnant weight by the 6th week of postpartum? Ethn Dis 14, 119126.
13. Smith, D, Lewis, C, Caveny, J et al. (1994) Longitudinal changes in adiposity associated with pregnancy – the CARDIA study. JAMA 271, 17471751.
14. Pugh, SJ, Richardson, GA, Hutcheon, JA et al. (2015) Maternal obesity and excessive gestational weight gain are associated with components of child cognition. J Nutr 145, 25622569.
15. Roberts, VHJ, Frias, AE & Grove, KL (2015) Impact of maternal obesity on fetal programming of cardiovascular disease. Physiology 30, 224231.
16. Flagg, LA, Sen, B, Kilgore, ML et al. (2014) The influence of gender, age, education and household size on meal preparation and food shopping responsibilities. Public Health Nutr 17, 20612070.
17. Rolls, B, Ello-Martin, J & Tohill, B (2004) What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutr Rev 62, 117.
18. He, F, Nowson, C, Lucas, M et al. (2007) Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. J Hum Hypertens 21, 717728.
19. Heo, M, Kim, RS, Wylie-Rosett, J et al. (2011) Inverse association between fruit and vegetable intake and BMI even after controlling for demographic, socioeconomic and lifestyle factors. Obes Facts 4, 449455.
20. Azagba, S & Sharaf, M (2012) Fruit and vegetable consumption and body mass index: a quantile regression approach. J Prim Care Community Health 3, 210220.
21. Brogan, K, Idalski Carcone, A, Jen, KL et al. (2012) Factors associated with weight resilience in obesogenic environments in female African-American adolescents. J Acad Nutr Diet 112, 718724.
22. Tohill, BC, Seymour, JD, Serdula, M et al. (2004) What epidemiologic studies tell us about the relationship between fruit and vegetable consumption and body weight. Nutr Rev 62, 365374.
23. Ledoux, TA, Hingle, MD & Baranowski, T (2011) Relationship of fruit and vegetable intake with adiposity: a systematic review. Obes Rev 12, e143e150.
24. Ball, K, Abbott, G, Cleland, V et al. (2012) Resilience to obesity among socioeconomically disadvantaged women: the READI study. Int J Obes (Lond) 36, 855865.
25. Public Health Service (1990) Healthy People 2000: National Health Promotion and Disease Prevention Objectives. DHHS Publication no. (PHS) 9050212. Washington, DC: US Department of Health and Human Services.
26. Centers for Disease Control and Prevention (2013) State Indicator Report on Fruits and Vegetables, 2013. Atlanta, GA: US Department of Health and Human Services.
27. Moore, LV & Thompson, FE (2015) Adults meeting fruit and vegetable intake recommendations – United States, 2013. MMWR Morb Mortal Wkly Rep 64, 710713.
28. Li, R, Serdula, M, Bland, S et al. (2000) Trends in fruit and vegetable consumption among adults in 16 US states: behavioral risk factor surveillance system, 1990–1996. Am J Public Health 90, 777781.
29. Darmon, N & Drewnowski, A (2008) Does social class predict diet quality? Am J Clin Nutr 87, 11071117.
30. Kirkpatrick, SI, Dodd, KW, Reedy, J et al. (2012) Income and race/ethnicity are associated with adherence to food-based dietary guidance among US adults and children. J Acad Nutr Diet 112, 624635.e626.
31. Dubowitz, T, Heron, M, Bird, CE et al. (2008) Neighborhood socioeconomic status and fruit and vegetable intake among whites, blacks, and Mexican Americans in the United States. Am J Clin Nutr 87, 18831891.
32. Davison, KK & Birch, LL (2001) Childhood overweight: a contextual model and recommendations for future research. Obes Rev 2, 159171.
33. Baranowski, T, Cullen, KW, Nicklas, T et al. (2003) Are current health behavioral change models helpful in guiding prevention of weight gain efforts? Obes Res 11, Suppl., 23S43S.
34. Garmezy, N (1985) Stress-resistant children: the search for protective factors. In Recent Research in Developmental Pathopathology: Journal of Child Psychology and Psychiatry Book Supplement #4, pp. 213233 [JE Stevenson, editor]. Oxford: Blackwell Scientific.
35. Neville, CE, McKinley, MC, Draffin, CR et al. (2015) Participating in a fruit and vegetable intervention trial improves longer term fruit and vegetable consumption and barriers to fruit and vegetable consumption: a follow-up of the ADIT study. Int J Behav Nutr Phys Act 12, 158.
36. Watters, JL, Satia, JA & Galanko, JA (2007) Associations of psychosocial factors with fruit and vegetable intake among African-Americans. Public Health Nutr 10, 701711.
37. Morel L’Horset, A, Schoenthaler, A, Chaplin, W et al. (2015) Changes in self-efficacy and fruit and vegetable intake in the FAITH trial. FASEB J 29, 1 Suppl., 584.6.
38. Luszczynska, A, Tryburcy, M & Schwarzer, R (2007) Improving fruit and vegetable consumption: a self-efficacy intervention compared with a combined self-efficacy and planning intervention. Health Educ Res 22, 630638.
39. Chang, M-W, Nitzke, S, Guilford, E et al. (2008) Motivators and barriers to healthful eating and physical activity among low-income overweight and obese mothers. J Am Diet Assoc 108, 10231028.
40. Barnes, A, Goodrick, GK, Pavlik, V et al. (2007) Weight loss maintenance in African-American women: focus group results and questionnaire development. J Gen Intern Med 22, 915922.
41. Lucan, SC, Barg, FK & Long, JA (2010) Promoters and barriers to fruit, vegetable, and fast-food consumption among urban, low-income African Americans – a qualitative approach. Am J Public Health 100, 631635.
42. Thomson, C (2011) Fruits, Vegetables, and Behavior Change: A Scientific Overview, 2011. Hockessin, DE: Produce for Better Health Foundation; available at
43. Dubowitz, T, Ncube, C, Leuschner, K et al. (2015) A natural experiment opportunity in two low-income urban food desert communities: research design, community engagement methods, and baseline results. Health Educ Behav 42, 1 Suppl., 87S96S.
44. Dubowitz, T, Zenk, S, Ghosh-Dastidar, B et al. (2015) Healthy food access for urban food desert residents: examination of the food environment, food purchasing practices, diet and BMI. Public Health Nutr 18, 22202230.
45. Dubowitz, T, Ghosh-Dastidar, M, Cohen, DA et al. (2015) Diet and perceptions change with supermarket introduction in a food desert, but not because of supermarket use. Health Aff (Millwood) 34, 18581868.
46. Economic Research Service, US Department of Agriculture (2009) Food Access Research Atlas, Archived Food Dessert Locator Documentation. Versions (accessed September 2017).
47. Rhee, JJ, Sampson, L, Cho, E et al. (2015) Comparison of methods to account for implausible reporting of energy intake in epidemiologic studies. Am J Epidemiol 181, 225233.
48. World Health Organization (2000) Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. WHO Technical Report Series no. 894. Geneva: WHO.
49. Subar, A, Kirkpatrick, S, Mitt, lB et al. (2012) The automated self-administered 24-hour dietary recall (ASA24): a resource for researchers, clinicians, and educators from the National Cancer Institute. J Acad Nutr Diet 112, 11341137.
50. National Cancer Institute (2017) Automated Self-Administered 24-Hour Dietary Assessment Tool. (accessed July 2017).
51. US Department of Health and Human Services & US Department of Agriculture (2015) 2015–2020 Dietary Guidelines for Americans, 8th ed. Washington, DC: US Government Printing Office; available at
52. US Department of Agriculture, Food and Nutrition Service (2000) Guide to Measuring Household Food Security (Revised 2000). (accessed March 2017).
53. US Department of Agriculture, Economic Research Service (2000) Food Security in the US, Survey Tools. (accessed March 2017).
54. US Census Bureau (2010) American Community Survey: Documentation. (accessed March 2017).
55. Sastry, N, Ghosh-Dastidar, B, Adams, J et al. (2006) The Design of a Multilevel Survey of Children, Families, and Communities: The Los Angeles Family and Neighborhood Survey. Santa Monica, CA: RAND Corporation.
56. Inter-university Consortium for Political and Social Research (n.d.) Project on Human Development in Chicago Neighborhoods (PHDCN): Master File, Wave 3, 2000–2002 (ICPSR 13668). (accessed September 2017).
57. Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 4 Suppl., 1220S1228S.
58. Kroenke, K, Spitzer, RL & Williams, JB (2003) The Patient Health Questionnaire-2: validity of a two-item depression screener. Med Care 41, 12841292.
59. Cohen, S, Kamarck, T & Mermelstein, R (1983) A global measure of perceived stress. J Health Soc Behav 24, 385396.
60. Zou, G (2004) A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 159, 702706.
61. Barros, AJ & Hirakata, VN (2003) Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 3, 21.
62. Petersen, MR & Deddens, JA (2008) A comparison of two methods for estimating prevalence ratios. BMC Med Res Methodol 8, 9.
63. Kimmons, J, Gillespie, C, Seymour, J et al. (2009) Fruit and vegetable intake among adolescents and adults in the United States: percentage meeting individualized recommendations. Medscape J Med 11, 26.
64. Inglis, V, Ball, K & Crawford, D (2005) Why do women of low socioeconomic status have poorer dietary behaviours than women of higher socioeconomic status? A qualitative exploration. Appetite 45, 334343.
65. Lawrence, W, Skinner, C, Haslam, C et al. (2009) Why women of lower educational attainment struggle to make healthier food choices: the importance of psychological and social factors. Psychol Health 24, 10031020.
66. James, D (2004) Factors influencing food choices, dietary intake, and nutrition-related attitudes among African Americans: application of a culturally sensitive model. Ethn Health 9, 349367.
67. Flood-Obbagy, JE & Rolls, BJ (2009) The effect of fruit in different forms on energy intake and satiety at a meal. Appetite 52, 416422.
68. Livesey, G, Taylor, R, Hulshof, T et al. (2008) Glycemic response and health – a systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am J Clin Nutr 87, issue 1, 258S268S.
69. Garriguet, D (2009) Diet quality in Canada. Health Rep 20, 4152.
70. Thornton, LE, Lamb, KE, Tseng, M et al. (2015) Does food store access modify associations between intrapersonal factors and fruit and vegetable consumption? Eur J Clin Nutr 69, 902906.
71. Cummins, S, Flint, E & Matthews, SA (2014) New neighborhood grocery store increased awareness of food access but did not alter dietary habits or obesity. Health Aff (Millwood) 33, 283291.
72. Nigg, C, Borrelli, B, Maddock, J et al. (2008) A theory of physical activity maintenance. Appl Psychol 57, 544560.
73. Martin, P, Dutton, G & Brantley, P (2004) Self-efficacy as a predictor of weight change in African-American women. Obes Res 12, 646651.
74. Acheampong, I & Haldeman, L (2013) Are nutrition knowledge, attitudes, and beliefs associated with obesity among low-income Hispanic and African American women caretakers? J Obes 2013, 123901.
75. Gordon-Larson, P (2001) Obesity-related knowledge, attitudes, and behaviors in obese and non-obese urban Philadelphia female adolescents. Obes Res 9, 112118.
76. Subar, AF, Freedman, LS, Tooze, JA et al. (2015) Addressing current criticism regarding the value of self-report dietary data. J Nutr 145, 26392645.
77. Murakami, K & Livingstone, MBE (2015) Prevalence and characteristics of misreporting of energy intake in US adults: NHANES 2003–2012. Br J Nutr 114, 12941303.
78. Freedman, LS, Commins, JM, Moler, JE et al. (2014) Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am J Epidemiol 180, 172188.
79. Subar, AF, Kipnis, V, Troiano, RP et al. (2003) Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: the OPEN study. Am J Epidemiol 158, 113.
80. Johnson, RK (2002) Dietary intake – how do we measure what people are really eating? Obes Res 10, Suppl. 1, 63S68S.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Parisi et al supplementary material
Table S1

 Word (14 KB)
14 KB

Weight resilience and fruit and vegetable intake among African-American women in an obesogenic environment

  • Sara M Parisi (a1), Lisa M Bodnar (a1) (a2) (a3) and Tamara Dubowitz (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.