Skip to main content Accessibility help
×
Home

Using national dietary intake data to evaluate and adapt the US Diet History Questionnaire: the stepwise tailoring of an FFQ for Canadian use

  • Ilona Csizmadi (a1), Beatrice A Boucher (a2) (a3), Geraldine Lo Siou (a4), Isabelle Massarelli (a5), Isabelle Rondeau (a5), Didier Garriguet (a6), Anita Koushik (a7), Janine Elenko (a8) and Amy F Subar (a9)...

Abstract

Objective

To evaluate the Canadian Diet History Questionnaire I (C-DHQ I) food list and to adapt the US DHQ II for Canada using Canadian dietary survey data.

Design

Twenty-four-hour dietary recalls reported by adults in a national Canadian survey were analysed to create a food list corresponding to C-DHQ I food questions. The percentage contribution of the food list to the total survey intake of seventeen nutrients was used as the criterion to evaluate the suitability of the C-DHQ I to capture food intake in Canadian populations. The data were also analysed to identify foods and to modify portion sizes for the C-DHQ II.

Setting

The Canadian Community Health Survey (CCHS) – Cycle 2.2 Nutrition (2004).

Subjects

Adults (n 20 159) who completed 24 h dietary recalls during in-person interviews.

Results

Four thousand five hundred and thirty-three foods and recipes were grouped into 268 Food Groups, of which 212 corresponded to questions on the C-DHQ I. Nutrient intakes captured by the C-DHQ I ranged from 79 % for fat to 100 % for alcohol. For the new C-DHQ II, some food questions were retained from the original US DHQ II while others were added based on foods reported in CCHS and foods available on the Canadian market since 2004. Of 153 questions, 143 were associated with portion sizes of which fifty-three were modified from US values. Sex-specific nutrient profiles for the C-DHQ II nutrient database were derived using CCHS data.

Conclusions

The C-DHQ I and II are designed to optimize the capture of foods consumed by Canadian populations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Using national dietary intake data to evaluate and adapt the US Diet History Questionnaire: the stepwise tailoring of an FFQ for Canadian use
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Using national dietary intake data to evaluate and adapt the US Diet History Questionnaire: the stepwise tailoring of an FFQ for Canadian use
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Using national dietary intake data to evaluate and adapt the US Diet History Questionnaire: the stepwise tailoring of an FFQ for Canadian use
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email Ilona.csizmadi@ahs.ca

References

Hide All
1. Prentice, RL, Mossavar-Rahmani, Y, Huang, Y et al. (2011) Evaluation and comparison of food records, recalls, and frequencies for energy and protein assessment by using recovery biomarkers. Am J Epidemiol 174, 591603.
2. Subar, AF, Kipnis, V, Troiano, RP et al. (2003) Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: the OPEN study. Am J Epidemiol 158, 113.
3. Freedman, LS, Commins, JM, Moler, JE et al. (2014) Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am J Epidemiol 180, 172188.
4. Tinker, LF, Sarto, GE, Howard, BV et al. (2011) Biomarker-calibrated dietary energy and protein intake associations with diabetes risk among postmenopausal women from the Women’s Health Initiative. Am J Clin Nutr 94, 16001606.
5. Prentice, RL, Huang, Y, Kuller, LH et al. (2011) Biomarker-calibrated energy and protein consumption and cardiovascular disease risk among postmenopausal women. Epidemiology 22, 170179.
6. Prentice, RL, Shaw, PA, Bingham, SA et al. (2009) Biomarker-calibrated energy and protein consumption and increased cancer risk among postmenopausal women. Am J Epidemiol 169, 977989.
7. Satija, A, Yu, E, Willett, WC et al. (2015) Understanding nutritional epidemiology and its role in policy. Adv Nutr 6, 518.
8. Kipnis, V, Midthune, D, Buckman, DW et al. (2009) Modeling data with excess zeros and measurement error: application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 65, 10031010.
9. Carroll, RJ, Midthune, D, Subar, AF et al. (2012) Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. Am J Epidemiol 175, 340347.
10. Cade, J, Thompson, R, Burley, V et al. (2002) Development, validation and utilisation of food-frequency questionnaires – a review. Public Health Nutr 5, 567587.
11. Barr, SI, Kwan, S & Janelle, KC (1994) Nutrient analysis using computer programs: comparison of a Canadian and an American database. J Can Diet Assoc 55, 2932.
12. Csizmadi, I, Kahle, L, Ullman, R et al. (2007) Adaptation and evaluation of the National Cancer Institute’s Diet History Questionnaire and nutrient database for Canadian populations. Public Health Nutr 10, 8896.
13. Anderson, LN, Cotterchio, M, Boucher, BA et al. (2010) Vitamin D intake from food and supplements among Ontario women based on the US Block food frequency questionnaire with and without modification for Canadian food values. Can J Public Health 101, 318321.
14. Bryant, H, Robson, PJ, Ullman, R et al. (2006) Population-based cohort development in Alberta, Canada: a feasibility study. Chronic Dis Can 27, 5159.
15. Block, G, Hartman, AM, Dresser, CM et al. (1986) A data-based approach to diet questionnaire design and testing. Am J Epidemiol 124, 453469.
16. Health Canada (2006) Canadian Community Health Survey, Cycle 2.2, Nutrition (2004): A Guide to Accessing and Interpreting the Data. Ottawa, ON: Office of Nutrition Policy and Promotion Health Products and Food Branch, Health Canada; available at http://www.hc-sc.gc.ca/fn-an/surveill/nutrition/commun/cchs_guide_escc-eng.php
17. National Cancer Institute (2015) Diet History Questionnaire II. http://appliedresearch.cancer.gov/dhq2/about/ (accessed October 2015).
18. Statistics Canada (2008) CCHS 2.2 – Nutrition: General Health & 24-Hour Dietary Recall Components – User Guide. Ottawa, ON: Statistics Canada; available at http://www23.statcan.gc.ca/imdb-bmdi/document/5049_D24_T9_V1-eng.pdf
19. Moshfegh, AJ, Rhodes, DG, Baer, DJ et al. (2008) The US Department of Agriculture automated multiple-pass method reduces bias in the collection of energy intakes. Am J Clin Nutr 88, 324332.
20. Subar, AF, Krebs-Smith, SM, Cook, A et al. (1998) Dietary sources of nutrients among US adults, 1989 to 1991. J Am Diet Assoc 98, 537547.
21. Subar, AF, Midthune, D, Kulldorff, M et al. (2000) Evaluation of alternative approaches to assign nutrient values to food groups in food frequency questionnaires. Am J Epidemiol 152, 279286.
22. Health Canada (2001) Canadian Nutrient File 2001b. Ottawa, ON: Health Canada; available at http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/index-eng.php
23. AC Nielsen Company of Canada (2010) National Level Item Ranking. Markham, ON: AC Nielsen Company of Canada; available at http://www.nielsen.com/ca/en.html
24. Mintel (2015) Global New Product Database. http://www.mintel.com/global-new-products-database (accessed October 2015).
25. Ananthakrishnan, AN, Du, M, Berndt, SI et al. (2015) Red meat intake, NAT2, and risk of colorectal cancer: a pooled analysis of 11 studies. Cancer Epidemiol Biomarkers Prev 24, 198205.
26. World Cancer Research Fund & American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. Washington, DC: AICR.
27. Robson, PJ, Siou, GL, Ullman, R et al. (2008) Sociodemographic, health and lifestyle characteristics reported by discrete groups of adult dietary supplement users in Alberta, Canada: findings from The Tomorrow Project. Public Health Nutr 11, 12381247.
28. Lo Siou, G, Yasui, Y, Csizmadi, I et al. (2011) Exploring statistical approaches to diminish subjectivity of cluster analysis to derive dietary patterns: the Tomorrow Project. Am J Epidemiol 173, 956967.
29. Biel, RK, Friedenreich, CM, Csizmadi, I et al. (2011) Case–control study of dietary patterns and endometrial cancer risk. Nutr Cancer 63, 673686.
30. Biel, RK, Csizmadi, I, Cook, LS et al. (2011) Risk of endometrial cancer in relation to individual nutrients from diet and supplements. Public Health Nutr 14, 19481960.
31. Kelemen, LE, Brenton, JD, Parkinson, C et al. (2014) Conditions associated with circulating tumor-associated folate receptor 1 protein in healthy men and women. PLoS ONE 9, e96542.
32. Brenner, DR, Speidel, T, Csizmadi, I et al. (2015) Glycemic load and endometrial cancer risk in a case–control study of Canadian women. Cancer Epidemiol 39, 170173.
33. Csizmadi, I, Kelemen, LE, Speidel, T et al. (2014) Are physical activity levels linked to nutrient adequacy? Implications for cancer risk. Nutr Cancer 66, 214224.
34. National Center for Health Statistics (2015) National Health and Nutrition Examination Survey. Atlanta, GA: Centers for Disease Control and Prevention; available at http://www.cdc.gov/nchs/nhanes/nhanes_products.htm
35. Health Canada (2010) Canadian Nutrient File. Ottawa, ON: Health Canada; available at http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/index-eng.php
36. Thompson, FE, Subar, AF, Brown, CC et al. (2002) Cognitive research enhances accuracy of food frequency questionnaire reports: results of an experimental validation study. J Am Diet Assoc 102, 212225.
37. Liu, L, Wang, PP, Roebothan, B et al. (2013) Assessing the validity of a self-administered food-frequency questionnaire (FFQ) in the adult population of Newfoundland and Labrador, Canada. Nutr J 12, 49.
38. Labonte, ME, Cyr, A, Baril-Gravel, L et al. (2012) Validity and reproducibility of a web-based, self-administered food frequency questionnaire. Eur J Clin Nutr 66, 166173.
39. Boucher, B, Cotterchio, M, Kreiger, N et al. (2006) Validity and reliability of the Block98 food-frequency questionnaire in a sample of Canadian women. Public Health Nutr 9, 8493.
40. Shatenstein, B, Nadon, S, Godin, C et al. (2005) Development and validation of a food frequency questionnaire. Can J Diet Pract Res 66, 6775.
41. Kelemen, LE, Anand, SS, Vuksan, V et al. (2003) Development and evaluation of cultural food frequency questionnaires for South Asians, Chinese, and Europeans in North America. J Am Diet Assoc 103, 11781184.
42. Subar, AF, Thompson, FE, Kipnis, V et al. (2001) Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America’s Table Study. Am J Epidemiol 154, 10891099.
43. Kristal, AR, Peters, U & Potter, JD (2005) Is it time to abandon the food frequency questionnaire? Cancer Epidemiol Biomarkers Prev 14, 28262828.
44. Archer, E & Blair, SN (2015) Implausible data, false memories, and the status quo in dietary assessment. Adv Nutr 6, 229230.
45. Subar, AF, Freedman, LS, Tooze, JA et al. (2015) Addressing current criticism regarding the value of self-report dietary data. J Nutr 145, 26392645.
46. Tooze, JA, Krebs-Smith, SM, Troiano, RP et al. (2012) The accuracy of the Goldberg method for classifying misreporters of energy intake on a food frequency questionnaire and 24-h recalls: comparison with doubly labeled water. Eur J Clin Nutr 66, 569576.
47. Garriguet, D (2008) Under-reporting of energy intake in the Canadian Community Health Survey. Health Rep 19, 3745.
48. Garriguet, D (2008) Impact of identifying plausible respondents on the under-reporting of energy intake in the Canadian Community Health Survey. Health Rep 19, 4755.
49. Mendez, MA, Popkin, BM, Buckland, G et al. (2011) Alternative methods of accounting for underreporting and overreporting when measuring dietary intake–obesity relations. Am J Epidemiol 173, 448458.
50. Rhee, JJ, Sampson, L, Cho, E et al. (2015) Comparison of methods to account for implausible reporting of energy intake in epidemiologic studies. Am J Epidemiol 181, 225233.
51. Freedman, DS & Ford, ES (2015) Are the recent secular increases in the waist circumference of adults independent of changes in BMI? Am J Clin Nutr 101, 425431.
52. Jenab, M, Slimani, N, Bictash, M et al. (2009) Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet 125, 507525.
53. Molag, ML, de Vries, JHM, Ocké, MC et al. (2007) Design characteristics of food frequency questionnaires in relation to their validity. Am J Epidemiol 166, 14681478.
54. Awadalla, P, Boileau, C, Payette, Y et al. (2013) Cohort profile of the CARTaGENE study: Quebec’s population-based biobank for public health and personalized genomics. Int J Epidemiol 42, 12851299.
55. Borugian, MJ, Robson, P, Fortier, I et al. (2010) The Canadian Partnership for Tomorrow Project: building a pan-Canadian research platform for disease prevention. CMAJ 182, 11971201.

Keywords

Type Description Title
WORD
Supplementary materials

Csizmadi supplementary material
Table S1

 Word (25 KB)
25 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed