Skip to main content Accessibility help
×
Home

Urban and rural dietary patterns are associated with anthropometric and biochemical indicators of nutritional status of adolescent Mozambican girls

  • Helena H Hauta-alus (a1), Liisa Korkalo (a2), Riitta Freese (a2), Carina Ismael (a3) and Marja Mutanen (a2)...

Abstract

Objective

The objective of the present study was to explore whether dietary patterns (DP) are associated with nutritional status indicators among adolescent Mozambican girls.

Design/Setting/Subjects

In this population-based cross-sectional study we used the FFQ data of 547 girls aged 14–19 years from Central Mozambique to derive dietary patterns by means of principal component analysis. We used two-level linear regression models to examine the associations between the DP and anthropometric and biochemical indicators of nutritional status.

Results

We identified three DP: ‘Urban bread and fats’, ‘Rural meat and vegetables’ and ‘Rural cassava and coconut’. The ‘Urban bread and fats’ DP was positively associated with BMI-for-age Z-score (BMIZ), mid-upper arm circumference (MUAC), triceps skinfold (P for all<0·001) and blood Hb (P=0·025). A negative association was observed between the ‘Urban bread and fats’ DP and serum folate (P<0·001). The ‘Rural meat and vegetables’ DP and the ‘Rural cassava and coconut’ DP were associated negatively with BMIZ, MUAC and triceps skinfold (P for all<0·05), but the ‘Rural meat and vegetables’ DP was associated positively with serum ferritin (P=0·007).

Conclusions

Urban and rural DP were associated with nutritional status indicators. In a low-resource setting, urban diets may promote body fat storage and blood Hb concentrations but compromise serum folate concentration. It is important to continue valuing the traditional, rural foods that are high in folate.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Urban and rural dietary patterns are associated with anthropometric and biochemical indicators of nutritional status of adolescent Mozambican girls
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Urban and rural dietary patterns are associated with anthropometric and biochemical indicators of nutritional status of adolescent Mozambican girls
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Urban and rural dietary patterns are associated with anthropometric and biochemical indicators of nutritional status of adolescent Mozambican girls
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email helena.hauta-alus@helsinki.fi

References

Hide All
1. Rose, ES, Blevins, M, Gonzalez-Calvo, L et al. (2015) Determinants of undernutrition among children aged 6 to 59 months in rural Zambezia province, Mozambique: results of two population-based serial cross-sectional surveys. BMC Nutr 1, 41.
2. de Onis, M & Branca, F (2016) Childhood stunting: a global perspective. Matern Child Nutr 12, Suppl. 1, 1226.
3. Patton, GC, Coffey, C, Cappa, C et al. (2012) Health of the world’s adolescents: a synthesis of internationally comparable data. Lancet 379, 16651675.
4. United Nations Development Programme (2015) International Human Development Indicators. http://www.hdr.undp.org/en/countries (accessed October 2016).
5. Korkalo, L, Freese, R, Fidalgo, L et al. (2014) A cross-sectional study on the diet and nutritional status of adolescent girls in Zambezia province, Mozambique (the ZANE study): design, methods, and population characteristics. JMIR Res Protoc 3, e12.
6. UNICEF (2016) Child Marriage: Current Status+Progress; Data. http://www.data.unicef.org/topic/child-protection/child-marriage/ (accessed October 2016).
7. Korkalo, L, Freese, R, Alfthan, G et al. (2015) Poor micronutrient intake and status is a public health problem among adolescent Mozambican girls. Nutr Res 35, 664673.
8. Prista, A, Maia, J, Damasceno, A et al. (2003) Anthropometric indicators of nutritional status: implications for fitness, activity, and health in school-age children and adolescents from Maputo, Mozambique. Am J Clin Nutr 77, 952959.
9. Popkin, BM (2006) Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. Am J Clin Nutr 84, 289298.
10. Stupar, D, Eide, WB, Bourne, L et al. (2012) The nutrition transition and the human right to adequate food for adolescents in the Cape Town metropolitan area: implications for nutrition policy. Food Policy 37, 199206.
11. Popkin, BM, Adair, LS & Ng, SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70, 321.
12. Abrahams, Z, Mchiza, Z & Steyn, NP (2011) Diet and mortality rates in Sub-Saharan Africa: stages in the nutrition transition. BMC Public Health 11, 801.
13. Padrao, P, Laszczynska, O, Silva-Matos, C et al. (2012) Low fruit and vegetable consumption in Mozambique: results from a WHO STEPwise approach to chronic disease risk factor surveillance. Br J Nutr 107, 428435.
14. Gomes, A, Damasceno, A, Azevedo, A et al. (2010) BMI and waist circumference in Mozambique: urban/rural gap during epidemiological transition. Obes Rev 11, 627634.
15. Damasceno, A, Azevedo, A, Silva-Matos, C et al. (2009) Hypertension prevalence, awareness, treatment, and control in Mozambique: urban/rural gap during epidemiological transition. Hypertension 54, 7783.
16. Padrao, P, Damasceno, A, Silva-Matos, C et al. (2012) Physical activity patterns in Mozambique: urban/rural differences during epidemiological transition. Prev Med 55, 444449.
17. Hoffmann, K, Schulze, MB, Schienkiewitz, A et al. (2004) Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am J Epidemiol 159, 935944.
18. Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
19. Delisle, H (2010) Findings on dietary patterns in different groups of African origin undergoing nutrition transition. Appl Physiol Nutr Metab 35, 224228.
20. Frank, LK, Kroger, J, Schulze, MB et al. (2014) Dietary patterns in urban Ghana and risk of type 2 diabetes. Br J Nutr 112, 8998.
21. Turyashemererwa, FM, Kikafunda, J, Annan, R et al. (2013) Dietary patterns, anthropometric status, prevalence and risk factors for anaemia among school children aged 5–11 years in central Uganda. J Hum Nutr Diet 26, Suppl. 1, 7381.
22. Keding, GB, Msuya, JM, Maass, BL et al. (2011) Dietary patterns and nutritional health of women: the nutrition transition in rural Tanzania. Food Nutr Bull 32, 218226.
23. Zeba, AN, Delisle, HF & Renier, G (2014) Dietary patterns and physical inactivity, two contributing factors to the double burden of malnutrition among adults in Burkina Faso, West Africa. J Nutr Sci 3, e50.
24. Korkalo, L, Erkkola, M, Heinonen, AE et al. (2017) Associations of dietary diversity scores and micronutrient status in adolescent Mozambican girls. Eur J Nutr 56, 11791189.
25. Ballard, T, Coates, J, Swindale, A et al. (2011) Household Hunger Scale: Indicator Definition and Measurement Guide. Washington, DC: Food and Nutrition Technical Assistance II Project, FHI 360.
26. World Health Organization (2007) Growth Reference for 5–19 years. Application Tools. http://www.who.int/growthref/tools/en/ (accessed November 2013).
27. World Health Organization (2011) Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. http://www.who.int/vmnis/indicators/ferritin/en/ (accessed November 2016).
28. World Health Organization (2011) Serum retinol concentrations for determining the prevalence of vitamin A deficiency in populations. http://www.who.int/vmnis/indicators/retinol/en/ (accessed November 2016).
29. King, JC (2011) Zinc: an essential but elusive nutrient. Am J Clin Nutr 94, issue 2, 679S684S.
30. Jordan, I, Hebestreit, A, Swai, B et al. (2013) Dietary patterns and breast cancer risk among women in northern Tanzania: a case–control study. Eur J Nutr 52, 905915.
31. Maruapula, S & Chapman-Novakofski, K (2007) Health and dietary patterns of the elderly in Botswana. J Nutr Educ Behav 39, 311319.
32. Becquey, E, Savy, M, Danel, P et al. (2010) Dietary patterns of adults living in Ouagadougou and their association with overweight. Nutr J 9, 13.
33. Sewram, V, Sitas, F, O’Connell, D et al. (2014) Diet and esophageal cancer risk in the Eastern Cape province of South Africa. Nutr Cancer 66, 791799.
34. McGarel, C, Pentieva, K, Strain, JJ et al. (2015) Emerging roles for folate and related B-vitamins in brain health across the lifecycle. Proc Nutr Soc 74, 4655.
35. Van Dam, RM & Hunter, D (2013) Biochemical indicators of dietary intake. In Nutritional Epidemiology, 3rd ed., pp. 150212 [WC Willett, editor]. New York: Oxford University Press.
36. Hodge, A & Bassett, J (2016) What can we learn from dietary pattern analysis? Public Health Nutr 19, 191194.
37. Willett, WC (2013) Dietary pattern analysis. In Nutritional Epidemiology, 3rd ed., pp. 319321 [WC Willett, editor]. New York: Oxford University Press.
38. Mikkilä, V, Vepsäläinen, H, Saloheimo, T et al. (2015) An international comparison of dietary patterns in 9–11-year-old children. Int J Obes Suppl 5, Suppl. 2, S17S21.
39. World Health Organization (2011) Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. http://www.who.int/vmnis/indicators/haemoglobin/en/ (accessed November 2011).
40. World Health Organization (2012) Serum and red blood cell folate concentrations for assessing folate status in populations. http://www.apps.who.int/iris/bitstream/10665/75584/1/WHO_NMH_NHD_EPG_12.1_eng.pdf (accessed January 2017).
41. International Zinc Nutrition Consultative Group, Brown, KH, Rivera, JA et al. (2004) International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25, 1 Suppl. 2, S99S203.

Keywords

Urban and rural dietary patterns are associated with anthropometric and biochemical indicators of nutritional status of adolescent Mozambican girls

  • Helena H Hauta-alus (a1), Liisa Korkalo (a2), Riitta Freese (a2), Carina Ismael (a3) and Marja Mutanen (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed